新闻中心

EEPW首页>模拟技术>设计应用> 基于FPGA的多通道数据采集系统设计

基于FPGA的多通道数据采集系统设计

作者: 时间:2009-10-23 来源:网络 收藏
大地电磁场携带着地球内部的结构、构造、温度、压力以及物质成分的物理状态等信息,为人们研究板块运动的规律、追溯地球的演化历史提供了科学依据。大地电磁探测是研究大陆岩石圈导电性结构的有效方法之一,使人们从电性角度认识地球内部的构造形态,达到了解地下不同深度地质情况的目的。该技术应用前景广泛,可用于地下更深层找矿、找水、找油、监测海底潜艇等,对国民经济和国防的发展都有重要的推动作用。
  最常用的方案多以MCU为核心,控制多路信号的及处理。但由于单片机本身的指令周期以及处理速度的影响,对于A/D进行控制及处理,普通的MCU往往不容易达到要求。考虑到器件的高集成度、内部资源丰富、特别适合处理多路并行等明显优于普通微处理器的特点,并针对大地电磁数据系统对实时性和同步性的要求,本文提出了一种数据采集方案。采用与ARM相结合的设计,采集主控制逻辑用实现,ARM用来实现采集数据的存储和数据传输控制。
1 系统总体结构
  系统总体结构如图1所示。A/D转换器采用TI公司的24位高精度模数转换器ADS1255;FPGA采用Altera公司的EP2C35;ARM为ARM9内核的处理器S3C2410。双口RAM由EP2C35内部存储器块配置而成,该双口RAM与ARM的系统总线相连,映射为ARM的一块内存区。

本文引用地址://m.amcfsurvey.com/article/188551.htm

  AD前端处理电路的作用是实现对信号的放大、衰减以及阻抗匹配,从而满足ADC对输入信号的要求。滤波网络滤除高频噪声和工频信号的干扰,增益放大通过ARM给出的控制信号实现对模拟信号的不同增益的放大处理。ADS1255负责把模拟电信号转换成数字信号,可以通过功能选择设置ADS1255工作在不同的工作模式下。ADS1255的工作时钟由FPGA提供,改变FPGA输出时钟的频率就能实现AD采样率的改变。FPGA并行控制5路AD的数据采集,并把采集到的各路数据按顺序以字节的形式写入双口RAM中缓存。FPGA对双口RAM的数据写入和ARM对数据的读取是通过乒乓传输结构实现的。当FPGA写满双口RAM上半区后,向ARM申请中断,ARM响应中断后,读出上半区数据到内存中进行存储;同时FPGA向RAM的下半区写数据,写满下半区后也向ARM发出中断,通知ARM读出下半区数据。通过乒乓传输保证了系统数据采样和数据传输可以连续进行。
2 FPGA的逻辑设计
  本方案中的数据采集流程如下:系统初始化后,ARM通过控制信号把采样频率、通道选择等参数通知给FPGA,然后FPGA向需要同步采样的通道对应的AD芯片提供统一时钟,使得AD同步地选择相应的通道进行数据的同步采样和转换,其结果由FPGA接收并存储在双口RAM对应的存储空间,然后由ARM从相应的双口RAM空间读取数据进行本地存储或经过网络传输给上位机进行处理。根据以上流程以及FPGA要实现的功能,整个FPGA逻辑设计划分为通道和采样率选择模块、时钟模块、双口RAM模块、AD采样控制模块、串并转换模块、数据存储控制模块、ARM接口控制模块。
  各模块连接关系如图2所示。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭