关 闭

新闻中心

EEPW首页>工控自动化>设计应用> dsPIC30F6010的直流无刷电机控制系统

dsPIC30F6010的直流无刷电机控制系统

作者: 时间:2016-10-10 来源:网络 收藏

摘要:基于微处理器设计了无刷直流电动机过零检测法的调速系统。根据无刷直流电动机的特点和所用控制芯片的功能,分别提出了和无位置传感器法的控制方案。从试验测试结果来看,电机启动稳定快速、正常,运转良好,具有较宽的调速范围等,反电动势过零检测法补偿图形符合要求。

本文引用地址://m.amcfsurvey.com/article/201610/306607.htm

引言

无刷直流电动机作为机电一体化产品,既具备交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备有刷直流电机的运行效率高、元励磁损耗以及调速性能好等诸多优点。同时,它克服了有刷直流电机由于机械电刷和换向器的存在所带来的噪声、火花、无线电干扰以及寿命短等弊病,并且制造成本低,简化了电机的维修,因此在工业上(特别是微特电机领域),以及在小功率、高转速的调速领域的应用越来越广泛。

基于微处理器的控制系统,分析了永磁无刷直流电动机的工作原理,并建立数学模型,然后根据原理和模型制定出无刷直流电动机的调速系统方案,并仿真得到理论上的PI参数。根据调速系统方案,在MPLAB系统开发平台上运用汇编语言分别用电机自带的位置传感器和反电动势过零检测法两种方法进行编程、调试,实现无刷直流电动机的数字控制。

1 无刷直流电动机数学模型

a.jpg

b.jpg

式中:ua,ub,uc表示电机三相相电压;ea,eb,ec表示电机各相;ia,ib,ic表示电机三相相电流;La,Lb,Lc表示电机三相绕组的自感;R、Lσ为每相绕组电阻和电感;ω为转子电角速度;θ为转子电角度;un为定子绕组中性点电压;t为时间量。

由于每相绕组漏电感等效为常数,即dLσ/dt=0,所以可将式(1)~(3)整理成下式:

c.jpg

式中:Te为电机的电磁转矩;ω为电机转子的机械角速度,可以看出其转矩方程与普通直流电机方程相似,转矩随着电流幅值的增大而增大。

给任意两相无刷直流电动机通电,假设无转矩脉动,相电流与之对应的感应电动势平顶部分完全重合,则发现任意两相相电流大小相等,方向相反,不通电相相电流为零,通过式(5)得出电磁功率和电磁转矩,分别表示如下:

d.jpg

式中:TL为负载转矩;B为阻尼系数;J为转动惯量。

2 系统控制方案

由于受IGBT等器件的功率限制,PWM调速只能应用在中、小功率情况下,电机为小功率电机,用PWM改变电枢端电压进行调速。

理想元刷直流电动机的感应电动势和电磁转矩公式如下:

e.jpg

其中:Np为通电导体数;1为转子铁心长度;r为转子半径;is为定子电流。无刷直流电动机调速原理框图如图1所示。

f.jpg

2.1

给定转速与速度反馈量形成偏差,经速度PI调节后产生电流参考值,与电流反馈值的偏差经电流PI调节后形成PWM占空比的控制量,实现电动机的速度控制。

2.2过零检测法

三相无刷直流电动机每转过60°需要换相一次,而转过一周需要6个换相点。在任意6个换相阶段,只有两相通电并且通电电流方向相反,第三相不通电,相电流为零。假设其为断开相,则可列出方程:

g.jpg

3 控制系统硬件结构设计

为16位(数据)改进的哈佛结构,是一款专为电机控制应用设计的80引脚的DSC,运算灵活,数据处理能力强(内部有两个40位的累加器),指令集灵活并且支持小数运算。

3.1 有位置传感器法硬件系统

有位置传感器法无刷直流电动机硬件系统框图如图2所示。

h.jpg

3.2 反电势过零检测法硬件系统

反电势过零检测法无刷直流电动机硬件系统框图如图3所示。

i.jpg

4 控制系统的软件设计

4.1 有位置传感器程序总体结构设计

软件设计主要采用MPLAB IDE 7.40作为开发环境。整个控制系统的软件部分由主程序、A/D中断服务子程序(其中包括速度调节子程序