新闻中心

EEPW首页>EDA/PCB>业界动态> 看看国外厂商正在发力研究的这些新技术

看看国外厂商正在发力研究的这些新技术

作者: 时间:2018-12-25 来源:半导体行业观察 收藏

  但IMEC的研究人员宣称他们找到了新的解决方法。

本文引用地址://m.amcfsurvey.com/article/201812/395988.htm

  首先我们先看一下其原理。所有的存储器都包括电容器—晶体管对的阵列,他们通过充放电将其数据作为电荷存储在电容器中;电荷的存在表示“1”,不存在时是“0”。这些数字的操作是计算机编程的基础。但由于空间限制,使得难以在Pitch内封装足够的电容,因此业界难以将扩展到16nm及更小的工艺制程。

看看国外厂商正在发力研究的这些新技术

  IMEC研究人员则表示,他们使用了使用新的介电材料(SrTiO3或STO),并使用原子层沉积(ALD)工艺去Pattern,打造了11nm的柱状电容。通过调整电容器和生长它的SrRuO3(SRO)外延模板的材料特性,研究人员实现了非常高的介电常数(k~118)和低漏电(±1V时10-7 A / cm2)。这意味着可以使用柱形电容器代替现有的杯形电容器,而不会在降低数据存储能力方面付出太多代价。这些结果使STO电容器适用于16nm和更小的持续缩放。

  IBM在多个新领域的探讨

  普通人对于IBM的了解,就是他们曾经的PC和Power处理器,但其实过去多年来,IBM在很多先进半导体科技上的研发领先于很多厂商,在本届的IEDM2018上,他们也带来多个对未来技术发展的想法分享:

  首先是Electrochemical Synaptic Cell。

  按照IBM的说法,我们现在为神经形态计算研发的Synaptic Cell (如RRAM和PCM等非易失性存储技术)具有非理想的切换特性(例如,不对称的重量更新(asymmetric weight update),有限的耐用性(limited endurance)和高水平随机性(elevated levels of stochasticity)或随机行为(random behavior)))。

  为解决这些问题,IBM研究人员将介绍一种新型可扩展电化学随机存取存储器(electrochemical random access memory,简称ECRAM)器件,该器件基于氧化钨(WO3)中的锂(Li)离子嵌入,可用作可扩展的synaptic cell。这些非易失性ECRAM显示出高水平的开关对称性和线性度,良好的数据保持能力,以及多达1,000个离散电导水平,这可用于大型存储器阵列中的多级操作。

  研究人员还展示了这个器件成功的高速编程能力。他们使用5ns脉冲宽度和300x300nm2 ECRAM器件。对于缩放的100x100nm2器件,预计具有1 fJ的超低开关能量。基于实验数据的MNIST图像识别模拟显示96%的准确度。

看看国外厂商正在发力研究的这些新技术

  其次,解决内存计算的主要挑战;

  李飞在文章《内存内计算,下一代计算的新范式?》中说到了“内存墙”问题,而IBM在IEDM 2018上带来了解决基于PCM内存内计算的一个大挑战——“精度有限”。他们提出了一种设备级解决方案,也就是他们所说的Proj-PCM。

  据介绍,这个方案可以实现AI相关计算所需的标量乘法数学(scalar multiplication mathematics)的高精度(8位)和低功率(60 nW)。相变材料是高度非线性的,新颖的Proj-PCM器件采用所谓的projection segment(金属电阻器),以便在读取存储器时稳定材料的电导(electrical conductance),从而降低噪声和温度漂移。他们构建了一个用于图像识别的单层神经网络,包括30个Proj-PCM设备并对其进行离线训练,之后即使在高温下也能表现出无差错的模式识别性能。

看看国外厂商正在发力研究的这些新技术

  这个方案具有存储和处理数据的双重功能,其单独的架构调整可以将能耗降低90%以上,并且相变存储器(PCM)可以获得额外的性能提升。该属性使其能够执行计算,研究人员预测的PCM(Proj-PCM)使PCM在很大程度上不受电导变化的影响,从而实现比以前更高的精度。按照论文介绍,这个方案不但能够以 8-bit 精度训练深度学习模型,同时保持图像、速度、文本数据集类别的模型精度。

  除此之外,IBM还在探索用III-V族材料代替Si沟道材料的方法。

  他们表示,III-V材料提供了硅没有的几个优点:如较低的有效质量,较高的迁移率和直接的带隙,这使它们更适合光子和隧道器件。硅已经并将继续成为电子行业的首选半导体,因为Si丰富,低成本,坚固并且在高质量SiO 2氧化物方面提供理想的钝化。为了结合两者的优点,在Si上集成III-V材料具有很高的技术和经济意义,并且已经被追求了多年。

  如下图所示,与基于Si的电路紧密“联系”的III-V器件可以提高系统性能,甚至可以实现新的应用领域,预期其系统制造成本将显着低于分立芯片封装方法。

看看国外厂商正在发力研究的这些新技术

Si上III-V材料和器件的各种应用空间的示意图

  他们开发了一种新的外延生长方法,在在Si上沉积III-V材料,从而获得良好的材料质量。最重要的一点是,该工艺与CMOS工艺兼容,这就是他们所谓的“模板辅助选择性外延”(Template-Assisted-Selective-Epitaxy,缩写TASE)工艺。

  据介绍,IBM的这个工艺设计是为了将高迁移率材料集成成纳米级别的sheets而设计的,他们也Si上集成了高性能InGaAs GAA nanosheet N-FETs。据报道,Nanosheets的厚度可以做到10nm,晶体管的栅极长度小于40nm,且栅极金属环绕通道,以实现最佳的栅极控制。

  Si上集成三五族材料的范例

看看国外厂商正在发力研究的这些新技术

  这些器件具有出色的电流驱动能力(Ion =355μA/μm),以及72 mV / decade的亚阈值摆幅(subthreshold swing)。研究人员表示,通过缩放栅极长度/nanoshee尺寸可以进一步提高器件性能,且这些器件与当前的硅制造工具兼容。

看看国外厂商正在发力研究的这些新技术

Template-Assisted-Selective-Epitax

  在这场大会上,还有量子计算、无线通信、宽带系功率电子和存储等多方面的分享。正是在一代代研究人员的努力下,我们才有了今天的电子世界。相信更美好的未来值得期待。


上一页 1 2 下一页

关键词:DRAMGAA-FET

评论


相关推荐

技术专区

关闭