新闻中心

EEPW首页>嵌入式系统>智能硬件> RISC-V单片机快速入门04-基于RT_Thread Nano添加FinSH

RISC-V单片机快速入门04-基于RT_Thread Nano添加FinSH

作者:一叶孤沙 时间:2020-06-18 来源:知乎 收藏

前言:

本文引用地址://m.amcfsurvey.com/article/202006/414406.htm

上一节,我们适配了控制台输出,可以打印调试信息,本节我们为系统增加FinSH功能,增加FinSH组件后,用户可输入命令调试或查看系统信息。

一、基础知识

1.FinSH简介

RT-Thread FinSH是 RT-Thread 的命令行组件(shell),提供一套供用户在命令行调用的操作接口,主要用于调试或查看系统信息。它可以使用串口 / 以太网 / USB 等与 PC 机进行通信,本文使用串口进行通信,使用 FinSH 组件基本命令的效果图如下所示:

二、添加步骤

1.导入工程

将上一节内容进行复制,修改.project中工程名字为FinSH,然后重新import进来新的工程

2.添加FinSH源码到工程

将rt-thread-3.1.3/components/finsh下文件添加到RT-Thread下。

添加成功后结果如下:

3.添加头文件路径

右击工程,点击 properties 进入下图所示界面,点击 C/C++ Build -> settings ,添加头文件路径

4.打开宏定义

添加好FinSH组件源码后,可以看到实际功能并没有打开,需要开启RT_USING_FINSH宏定义。

打开rtconfig.h文件,增加宏定义:#define RT_USING_FINSH

5.适配FinSH组件接口

(1) 修改GD32VF103xB.lds文件

在上图.text中添加如下代码:

/* section information for finsh shell */ . = ALIGN(4); __fsymtab_start = .; KEEP(*(FSymTab)) __fsymtab_end = .; . = ALIGN(4); __vsymtab_start = .; KEEP(*(VSymTab)) __vsymtab_end = .; . = ALIGN(4); /* section information for initial. */ . = ALIGN(4); __rt_init_start = .; KEEP(*(SORT(.rti_fn*))) __rt_init_end = .; . = ALIGN(4); /* section information for modules */ . = ALIGN(4); __rtmsymtab_start = .; KEEP(*(RTMSymTab)) __rtmsymtab_end = .;

修改后如下所示

(2) 移植函数

本文采用中断方式获取串口接收到字符,原理是,在 uart 接收到数据时产生中断,在中断中把数据存入 ringbuffer 缓冲区,然后释放信号量,tshell 线程接收信号量,然后读取存在 ringbuffer 中的数据。

在gd32vf102c_start.c文件中,实现rt_hw_console_getchar如下:

#define UART_RX_BUF_LEN 128 rt_uint8_t uart_rx_buf[UART_RX_BUF_LEN] = {0}; struct rt_ringbuffer uart_rxcb; /* 定义一个 ringbuffer cb */ static struct rt_semaphore shell_rx_sem; /* 定义一个静态信号量 */ void gd_eval_com_init(uint32_t com) { uint32_t com_id = 0U; if(EVAL_COM0 == com){ com_id = 0U; }else if(EVAL_COM1 == com){ com_id = 1U; } /* 初始化串口接收 ringbuffer */ rt_ringbuffer_init(&uart_rxcb, uart_rx_buf, UART_RX_BUF_LEN); /* 初始化串口接收数据的信号量 */ rt_sem_init(&(shell_rx_sem), "shell_rx", 0, 0); eclic_irq_enable(USART0_IRQn, 1, 0); /* enable GPIO clock */ rcu_periph_clock_enable(COM_GPIO_CLK[com_id]); /* enable USART clock */ rcu_periph_clock_enable(COM_CLK[com_id]); /* connect port to USARTx_Tx */ gpio_init(COM_GPIO_PORT[com_id], GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, COM_TX_PIN[com_id]); /* connect port to USARTx_Rx */ gpio_init(COM_GPIO_PORT[com_id], GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, COM_RX_PIN[com_id]); /* USART configure */ usart_deinit(com); usart_baudrate_set(com, 115200U); usart_word_length_set(com, USART_WL_8BIT); usart_stop_bit_set(com, USART_STB_1BIT); usart_parity_config(com, USART_PM_NONE); usart_hardware_flow_rts_config(com, USART_RTS_DISABLE); usart_hardware_flow_cts_config(com, USART_CTS_DISABLE); usart_receive_config(com, USART_RECEIVE_ENABLE); usart_transmit_config(com, USART_TRANSMIT_ENABLE); usart_enable(com); usart_interrupt_enable(com, USART_INT_RBNE); } char rt_hw_console_getchar(const char str) { int ch = 0; / 从 ringbuffer 中拿出数据 */ while (rt_ringbuffer_getchar(&uart_rxcb, (rt_uint8_t *)&ch) != 1) { rt_sem_take(&shell_rx_sem, RT_WAITING_FOREVER); } return ch; } void USART0_IRQHandler() { int ch = -1; int recv_flag = 0; /* enter interrupt / rt_interrupt_enter(); if(RESET != usart_interrupt_flag_get(EVAL_COM0, USART_INT_FLAG_RBNE)){ while (1) { ch = -1; if (RESET != usart_interrupt_flag_get(EVAL_COM0, USART_INT_FLAG_RBNE)) { ch = usart_data_receive(EVAL_COM0); // rt_kprintf("recv data is :%xrn", ch); } if (ch == -1) { break; } recv_flag = 1; / 读取到数据,将数据存入 ringbuffer */ rt_ringbuffer_putchar(&uart_rxcb, ch); } // if (1 == recv_flag) // { rt_sem_release(&shell_rx_sem); // } } rt_interrupt_leave(); } 新增ringbuffer.c函数 /* 第一部分:ringbuffer 实现部分 */ #include  #include  #include "ringbuffer.h" rt_inline enum rt_ringbuffer_state rt_ringbuffer_status(struct rt_ringbuffer *rb) { if (rb->read_index == rb->write_index) { if (rb->read_mirror == rb->write_mirror) return RT_RINGBUFFER_EMPTY; else return RT_RINGBUFFER_FULL; } return RT_RINGBUFFER_HALFFULL; } /** * get the size of data in rb */ rt_size_t rt_ringbuffer_data_len(struct rt_ringbuffer *rb) { switch (rt_ringbuffer_status(rb)) { case RT_RINGBUFFER_EMPTY: return 0; case RT_RINGBUFFER_FULL: return rb->buffer_size; case RT_RINGBUFFER_HALFFULL: default: if (rb->write_index > rb->read_index) return rb->write_index - rb->read_index; else return rb->buffer_size - (rb->read_index - rb->write_index); }; } void rt_ringbuffer_init(struct rt_ringbuffer *rb, rt_uint8_t *pool, rt_int16_t size) { RT_ASSERT(rb != RT_NULL); RT_ASSERT(size > 0); /* initialize read and write index */ rb->read_mirror = rb->read_index = 0; rb->write_mirror = rb->write_index = 0; /* set buffer pool and size */ rb->buffer_ptr = pool; rb->buffer_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE); } /** * put a character into ring buffer */ rt_size_t rt_ringbuffer_putchar(struct rt_ringbuffer *rb, const rt_uint8_t ch) { RT_ASSERT(rb != RT_NULL); /* whether has enough space */ if (!rt_ringbuffer_space_len(rb)) return 0; rb->buffer_ptr[rb->write_index] = ch; /* flip mirror */ if (rb->write_index == rb->buffer_size-1) { rb->write_mirror = ~rb->write_mirror; rb->write_index = 0; } else { rb->write_index++; } return 1; } /** * get a character from a ringbuffer */ rt_size_t rt_ringbuffer_getchar(struct rt_ringbuffer *rb, rt_uint8_t *ch) { RT_ASSERT(rb != RT_NULL); /* ringbuffer is empty */ if (!rt_ringbuffer_data_len(rb)) return 0; /* put character */ *ch = rb->buffer_ptr[rb->read_index]; if (rb->read_index == rb->buffer_size-1) { rb->read_mirror = ~rb->read_mirror; rb->read_index = 0; } else { rb->read_index++; } return 1; }

三、运行结果

使用jlink烧录,通过控制台输入version,运行结果如下所示





评论


相关推荐

技术专区

关闭