新闻中心

EEPW首页>智能计算>设计应用> 清华大学电子系研究结果新进展

清华大学电子系研究结果新进展

作者: 时间:2023-02-21 来源:清华新闻网 收藏

清华大学电子系陈宏伟课题组在集成光计算领域取得进展

本文引用地址://m.amcfsurvey.com/article/202302/443546.htm

机器学习技术已广泛应用于高性能信息处理领域,与此同时,在解决各类复杂任务时对于计算容量、计算速度以及能耗等的要求也越来越高。然而,现有硬件的计算速度受到传统冯·诺依曼体系结构的严重限制,随着计算过程所需时间的增长,计算效率将变得低下,能耗也会更大。近年来,光子方法在执行涉及复杂计算的深度学习过程方面显示出了非凡潜力,国内外多家研究机构陆续提出了集成光子神经网络的新架构,如基于马赫增德尔干涉仪(MZI)、微环谐振腔(MRR)以及波分系统设计的光子神经网络等。然而,现阶段集成光子神经网络普遍存在计算单元大规模拓展受限的问题,严重限制了计算容量的进一步提高。

清华大学电子系陈宏伟教授课题组提出了一种基于亚波长结构的集成衍射光子神经网络(DONN),克服了空间衍射光子神经网络的体积限制,不仅大大提高了计算单元的集成度,同时减少了由于庞大的体光学元件和系统校准而产生的误差。对于其他集成光子神经网络而言,DONN 芯片摆脱了波导数目的制约,更容易实现计算单元的片上大规模拓展,从而解决了集成光子神经网络的高计算容量问题。本研究中实现的 DONN 光计算芯片,其计算吞吐量可达 1.38×104TOPS(TOPS:Trillions of operations per second,每秒万亿次操作),芯片算力密度可达 1016FLOPS/mm2(FLOPS:Floating-point operations per second,每秒浮点操作数),能量消耗约为 10-17J/FLOP(FLOP:Floating-point operation,浮点操作)。该 DONN 芯片具有完全的国内自主知识产权,制备工艺也完全在国内实现,与标准互补金属氧化物半导体(CMOS)工艺兼容,满足大规模、低成本生产条件。

陈宏伟课题组系统性地完成了集成衍射光子神经网络芯片的理论探索、仿真验证、结构设计、版图绘制、芯片加工、封装以及系统误差补偿等全过程验证。该成果将集成光子神经网络芯片的实用性显著提高,有望在一个芯片上实现多个 DONN 计算单元的集成,从而使得片上光计算系统具有更强的处理能力,这将大大推动集成光计算、光子智能等领域的快速发展。

图 2. DONN 封装实物图、芯片结构及测试结果

该成果以「基于片上衍射光学的光子机器学习」(Photonic machine learning with on-chip diffractive optics)为题发表在《自然•通讯》(Nature Communications)上。

电子工程系 2020 级博士生符庭钊为文章的第一作者,陈宏伟教授为文章通讯作者。其他作者包括清华大学电子工程系陈明华教授和杨四刚副研究员等。本研究得到了国家重点研发计划、国家自然科学基金重点项目等的支持。

清华大学电子系盛兴课题组合作开发出三维光电生物活性支架

开发新型的神经调控技术,对单个神经元或者特定神经网络的活动进行实时、精确地激活和/或抑制,对于深入理解大脑的运行机理、开发神经疾病治疗手段等都具有重要的意义。生物支架在组织修复、疾病治疗等生物医学工程技术中扮演着极其重要的角色。

传统的生物支架主要起着力学支撑的作用,生物功能较为单一,为了提高其生物活性,往往需要添加生长因子、药物等生物化学物质。然而,生物化学物质在体内的释放过程中面临着可控性差,时空分辨率低以及时效性短等问题。相比较而言,基于光电信号等物理场的生物调控方式具有可控性好、时空分辨率高、作用周期长等优点,使其在生物调控等领域有着广阔的应用前景。

图 1.示意图

近日,清华大学电子工程系盛兴副教授课题组与合作者开发了一种具备光电功能的新型生物活性支架,研究者将薄膜单晶硅器件与有机生物材料集成,结合微纳加工技术,制备了具有多层级结构、仿天然骨组织的在光照情况下,薄膜单晶硅器件可产生电信号,能够刺激并调控骨髓干细胞的活动,并进一步促进动物缺损颅骨组织的修复与再生。与传统电刺激方式相比,这种无线的光电刺激方式可以减少导线连接对周围组织造成损伤。此外,包含薄膜硅的支架结构可以在生物体内安全降解,具备良好的生物相容性,能够避免二次手术,降低感染的风险。这种可生物降解、无线远程供能、具备光电活性的新型生物支架,为组织工程研究和临床应用开辟了新思路。

图 2. 三维仿生光电生物支架及其生物可降解特性

研究团队将薄膜硅器件与骨髓干细胞、生物组织等结合,构建了光电生物界面,在不需要引入光遗传学等基因编码工具条件下,借助光照时硅与细胞界面处产生的极化光生电场,实现了对骨髓干细胞膜电位、胞内钙离子活动、增殖分化等生理活动的有效调控。

图 3. 薄膜硅器件的光电响应及其对干细胞膜电位和钙离子浓度的光电调控作用

进一步,研究人员将薄膜单晶硅器件与羟基磷灰石等生物材料集成,制备了仿天然骨组织的三维生物支架,利用薄膜硅赋予支架光电活性,使其具备光电响应功能。在活体动物实验中,被植入大鼠颅骨缺损部位,利用支架的光电刺激作用,有效地促进了颅骨组织的修复与再生,完成了光电生物支架系统在生物医疗领域的验证与应用。

图 4. 光电生物支架促进大鼠颅骨修复

该研究成果以「三维仿生光电生物支架促进颅骨修复」(A 3D Biomimetic Optoelectronic Scaffold Repairs Cranial Defects)为题发表于《科学·进展》(Science Advances)。

文章的共同通讯作者为清华大学电子工程系、清华-IDG/麦戈文脑科学研究院盛兴副教授和北京大学口腔医学院副主任医师王宇光,第一作者为清华大学电子工程系博士生王华春,合作者来自北京协和医院,北京大学口腔医院,积水潭医院,清华大学电子工程系、材料学院、生命科学学院等单位。该研究获得国家自然科学基金、北京市自然科学基金、清华大学自主科研计划、清华大学电子系自主科研项目、清华大学新型陶瓷与精细工艺国家重点实验室等项目的支持。



评论


技术专区

关闭