新闻中心

EEPW首页>电源与新能源>设计应用> 燃料电池发动机二次开发控制系统的设计与实现

燃料电池发动机二次开发控制系统的设计与实现

作者:武汉理工大学 自动化学院 阮诗峰 全书海 陈启宏 时间:2008-07-31 来源:世界电子元器件 收藏

参数升级

本文引用地址://m.amcfsurvey.com/article/86481.htm

控制系统常用的参数包括了各类控制参数、安全参数以及不同传感器的标定参数等。其中,控制参数包括开关机流程控制、风机功率控制、增湿水流量控制、尾气排放控制等;安全参数包括各类报警参数、电堆保护参数(自关机、降载)、保护延时参数等;各类传感器如电压、电流、水位、压力等传感器。传感器是A/D采样的重要渠道,控制器中集成了对各种传感器采样初值的计算转换参数,参数中包含了传感器的量程、信号类型等,但当传感器损坏、需要更换时,控制器中的计算参数也要相应调整。实验证明,各类参数的合理配置可以及时重组整个控制系统的控制策略,能更加安全、可靠地实现的最优净功率输出。

  例如,在自关机条件中,电堆的温度、氢气的压力、风机电流等都是影响正常工作的重要因素,一旦超出允许范围控制系统就会执行自关机指令,当电堆性能升级时,电堆所能承受的工作范围相应变广,这时可通过上位机配置新的自关机条件使控制器得到相应的配置升级。

二次开发升级实现策略

  上位机将配置信息传送到控制器中,控制器判断识别后将信息分类并分区保存在软配置模块的EEPROM中,然后由DSP主程序从EEPROM中已分类好的固定地址中调用。上位机在配置升级信息时就相当于改变数据在EEPROM中的存贮顺序或大小。本系统采用的EEPROM空间大小为64kB,每页数据存储区有32个字节(0x0000-0x0031),可以存贮256页(0x0000-0xFF00),每一页可以存贮一种配置信息。

(1)射映模型

  在控制器端口的配置升级过程中,上位机配置终端和控制器软配置模块对各个硬件端口的协同定义构成了一个映射模型(如图4)。所谓的映射模型可以抽象成这样的一个函数映射,即f:x→y,其中x和y是两个构件集合,在这里可以表示为控制器硬件端口序号及其实际应用功能, f是x到y的一个映射,是可变的,该映射关系通过EEPROM为媒介得以表现并保存。上位机每发送一次新的端口配置, f就改变一次,新的硬件端口功能也相应改变。例如,原来的控制器第一路A/D接口初始设置为“采集进堆温度信号”,第二路A/D设置为“采集出堆温度信号”,“第一路”和“第二路”就是映射模型中的x,表示这是在控制器上的硬件端口序号;而“进堆温度”和“出堆温度”则是上位机所要配置的 y,表示端口的实际应用功能;而f则把两者关联起来,表示了x到y的映射关系。当上位机将这两路A/D接口交换配置时,f也相应发生变化,配置的结果就是“第一路”A/D端口变成“采集出堆温度信号”,“第二路”A/D端口则变成“采集进堆温度信号”了。

(2)执行引挚

  上位机完成了对控制器的配置工作后,在软配置模块中各个升级信息的映射模型也就相应建立完毕,这时DSP再通过执行引挚将各个映射模型调用到主程序相应的程序模块中。执行引擎是一个比表示配置信息的映射模型更高一级的映射模型,同理也可以把它抽象成一个函数映射f:x→y,在这里,x是指软配置模块中的升级信息映射模型,如A/D端口映射模型、I/O端口映射模型、自关机条件映射模型、传感器标定映射模型等;而y则是主程序中执行这一部份升级信息的程序模块, f则完成相应映射模型到程序执行模块的映射。

多性能协调控制策略

二次开发控制系统的另一个特点在于其控制策略的多样性。传统的控制系统对于单个控制对象而言通常只有一种控制策略,在控制过程中无法满足用户或功能扩展的需求,有时为了满足不同的控制目标而不得不重新烧写程序甚至重新设计控制器。如图5所示,本系统通过上位机软切换控制器中集成的策略库,可以方便地使用多种不同的控制策略对燃料电池发动机进行控制。可供选择的控制策略有系统全局正常运行协调控制策略、系统局部正常运行协调控制策略以及系统局部故障运行协调控制策略。多种控制策略的备选在很大程度上满足了控制系统的不同需求,其操作简易,人机对话友好。

结论

  本文根据燃料电池发动机二次开发系统的功能需求,设计了可供软配置的控制器以及相应的二次开发升级机制,控制器实现了对内部端口结构以及控制系统运行参数的二次开发升级。本文还提出了燃料电池发动机控制系统多性能协调控制策略,并对其在该控制系统中的应用进行了初步探索。实践表明,该控制系统运行状况稳定、可靠,并获得了良好的控制效果。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭