新闻中心

EEPW首页>光电显示>设计应用> 低色温高显色性白光LED的研究

低色温高显色性白光LED的研究

作者: 时间:2010-08-30 来源:网络 收藏

 随着发光二极管()芯片和封装技术的提升,白光作为普通照明光源逐步受到人们的青睐。它具有低压、低功耗、高可靠性、长寿命等一系列优点,已广泛应用于路灯、LED灯具等领域,是一种符合国家“节能减排”政策的绿色新光源,有望取代目前在照明领域占统治地位的荧光灯和白炽灯。荧光灯在发光过程中需利用汞蒸气作为放电介质,对人体产生危害,2006年开始已在欧盟地区禁售。白炽灯由于电光转换效率低,2009年9月,欧盟率先出台白炽灯禁售的政策,各国也纷纷发布禁售的进程,使得白光LED向普通照明尤其是室内照明又前进了一大步。

本文引用地址://m.amcfsurvey.com/article/169211.htm


  然而,白光LED的显色性是制约其进入室内照明,特别是阅读照明、医疗照明的技术瓶颈。长期以来,人们采用InGaN基蓝光LED芯片和Ce3+激活的稀土石榴石(YAG:Ce3+)黄色荧光粉组合来制备冷白光LED(Tc>5,000K),可实现显色指数高于80,但制备暖白光LED(Tc5,000K)时,由于白光LED光谱的不均衡使得人们在技术上难以同时实现低色温和高显色性[1-3].


  本文通过探讨制备低色温、高显色性大功率白光LED的方法,分析其优缺点,并从中总结实现低色温、高显色大功率白光LED的最佳方案。


  1 制备低色温高显色性白光LED的方法


  1.1RGB三基色芯片混合成白光


  将红、绿、蓝三色LED功率型芯片集成封装在单个器件之内,调节三基色的配比,理论上可以获得各种颜色的光。通过调整三色LED芯片的工作电流可产生宽谱带白光[4].


  吴海彬等人[5]自行设计的集成功率型1W白光LED色温可以覆盖2,700~13,000K,显色指数均可做到80以上。Yoshi Ohno等人[6]通过模拟仿真三基色芯片和四基色芯片LED模型获得了色温Tc为3,000~4,000K、显色指数Ra分别为80~89和90以上的白光,也就是说通过多芯片集成的方法能获得低色温高显色性的白光LED.这种方法的缺点是封装结构比较复杂,电路实现较困难,白光稳定性较差,成本比较高。由于红、绿、蓝三种颜色LED芯片的量子效率不同,各自随温度和驱动电流的变化不一样,且随时间的衰减也不同,所以输出白光的色度不稳定。为了使其稳定,需要对三种颜色分别加反馈电路进行补偿,所以封装结构及电路比较复杂。这种方法的优点是效率高、使用灵活,由于发光全部来自红、绿、蓝三种LED,不需要进行光谱转换,因此其能量损失最小,效率最高。同时由于RGB三色LED可以单独发光,且其发光强度可以单独调节,故具有较高的灵活性[7].


  选择RGB三基色合成白光技术实现功率型白光LED,主要应用于显示行业,如动态广告牌、商业等大型和超大型全色显示屏的信息显示。2009年5月份欧司朗光电半导体公司新开发出体积最小的RGB Multi-Chip LED,特别适合应用于大尺寸高分辨率的全彩屏幕,确保画面在近距离观看时依然清晰。


  1.2近紫外LED芯片激发荧光粉


  采用高亮度的近紫外LED(~400nm)激发RGB三基色荧光粉,产生红、绿、蓝三基色,并通过调整三色荧光粉的配比可以形成白光[4].


  Katsuya Kobashi等人[8]采用405nm近紫外LED芯片激发混合的三基色(红色、绿色和蓝色)荧光粉,获得了白光LED的Tc和Ra分别为3,900K和96.


上一页 1 2 3 下一页

关键词:LED

评论


相关推荐

技术专区

关闭