新闻中心

EEPW首页>嵌入式系统>设计应用> MSP430x4xx系列微控制器的独特时钟设计

MSP430x4xx系列微控制器的独特时钟设计

作者: 时间:2012-02-22 来源:网络 收藏

必须明确的是,MCLK的精度只是建立在平均的基础上。对于短期精度,由于每个周期来自相邻的DCO频率抽头,因此是不精确的;而对于长期精度,由于经过了累加平均,因而相对误差被减小了。实际上,由于调整器的周期为32,每次调整量为每一频率段的10%,因此相对误差可降到低于0.33%。

也可以通过软件编程NDCOMOD来确定DCO的输出频率,以便用FLL锁频时达到快速锁定的目的;而在不用FLL时,可不用外部晶振来产生所需频率。假如所需频率f为100Hz,并假定DCO在0抽头时的频率为f0=700Hz。则与f相邻的两个频率为:

27.jpg

将这两个频率代入上面的公式中,便可以求得NDCOOD=24。所以,若DCO中心频率为1MHz,那么,将24写入与NDCOMOD相应的寄存器中,即可在无外接晶振的条件下获得所需。在这种应用条件下,需要注意几点:

●FLL和调整器在系统复位时默认为允许,要工作在这种状态,必须首先禁止FLL。否则DCO会自动锁定到f0;

●f0是不确定的,在具体应用时应先测定,然后再用它来计算所需的相邻频率。

●由于DCO的输出频率会随着稳定度和电压的变化而漂移,所以不能应用于对精度要求较高的场合。

3.4 DCO频率范围控制

在通过调节倍频因子N改变MCLK时,FLL+调节DCO的频率将趋于目标频率。当MCLK稳定在新的频率抽头之前,每向下一个DCO抽头,其变化一次需要1024个周期的延时。可以看到,对于MCLK的大范围频率变化,将需要很大的时延才能达到稳定。对此,采用了一种频率分段的机制来处理这种大范围的频率变化。即将DCO输出的700kHz~40MHz分为5段,每一段的中心频率基于典型频率fnominal(2MHz)的倍数。使用时可以通过控制寄存器SCFI0的FN_8、FN_4、FN_3、FN_2等四位对它进行控制。表1列出了DCO的频率范围控制方法。由表中可见,通过控制这些位可在不改变当前抽头设置的情况下改变DCO的输出频率MCLK(实际上是立即选择了相邻的抽头,而不是逐个调节)。因此,在这种方式下,DCO调节到所需频率的时间比仅仅通过调节倍频因子要短得多。所以首先应根据所需频率来调整DCO的中心频率,或者在MCLK变化较大时及时调节 DCO的中心频率。

28.jpg

4用FLL+优化系统性能

正是由于采用了上述FLL+时钟模块,才使它的全局性能得到了优化。同时,它还提供有灵活的时钟配置选择,各个模块的时钟都可用软件选择。也可以根据系统的具体要求来动态调整系统的时钟频率,进而优化它的性能。 使用时,一般可按照以下原则来进行:

●若需要稳定而精确的低频时钟,可以采用LFXT1时钟;

●若需要稳定而精确的高频时钟,可以采用LFXT2时钟;

●若需要系统能够快速地从节能模式切换到激活模式,可以采用DCO经锁频后为系统提供时钟MCLK/SMCLK。FLL+的一个突出优点就是能够快速地达到稳定状态。

时,要尽可能地选择较低的工作频率来降低系统的功耗。此外,系统还提供有5种可编程的节能模式,以便更好地降低系统功耗。

另外,FLL+的振荡器具有自动切换功能,当DCO没有用于MCLK或SMCLK时,利用该功能可自动关闭DCO。但是一旦DCOCLK信号被用于 MCLK/SMCLK,DCO就会立即自动开启。而当外接晶振或者谐振器出现错误或停振时,系统时钟也会自动切换到DCO模式,从而进一步提高系统的可靠性。

参考文献
1.Family User's Guide(SLAU056B)
2.The MSP430x3xx Clock System(SLAA080)
3.胡大可.MSP430FLASH型超低功耗16位单 片机.北京航空航天大学出版社,2001


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭