新闻中心

EEPW首页>模拟技术>设计应用> 基于CSMC工艺的零延时缓冲器的PLL设计

基于CSMC工艺的零延时缓冲器的PLL设计

作者: 时间:2010-08-26 来源:网络 收藏

本文引用地址://m.amcfsurvey.com/article/187824.htm

  从复位信号有效开始考虑,以参考时钟超前为例,in1 的下降沿首先使A 由高变低,接下来的in2 下降 沿也使B 由高变低,四输入与非门的四个输入端都为高,复位信号RN 变低(有效),使A 和B 在很短 的时间内变高 。下一个周期重复前一个步骤。反向器的作用是为了消除进入电荷泵的信号上的毛刺。另 外由于复位信号是由四输入与非门产生的,其本身的延时足以使复位脉冲有一定的宽度,减小鉴相死区, 又不至于太宽出现错误的输出波形。

  2.2 电荷泵(CP)

  电荷泵设计的关键是降低抖动和电流失配引起的毛刺以及在开关瞬间的电荷转移。调节电荷泵的尺 寸使匹配电流、增益、电容参数得到优化。本文的电荷泵结构简单,如图2 所示,由M1M4 组成连个 共源共栅结构的恒定电流源,高的输出阻抗使其接近理想的电流源,输出电阻近似为(gm2+gmb2)ro2r01 或者 (gm3+gmb3)ro3r04。UP 和DN 信号经过反向器作为电荷泵的充放电开关,v1v4 是由基准电路产生的固定 电平,使电流源工作在饱和区,关系满足v2>v1>v3>v4。当UP 为低DN 为高时,上半部分电路导通, 通过反向器内部的电源对电容充电;反之,则下半部分导通,Vctrl 通过M3、M4 及反向器内部对地放电; 另外,由于开关不与输出直接相连,几乎不受电荷注入的影响,同时四个管子在工作都处于饱和状态可 以消除电荷分享效应。在锁定情况下,PFD 产生同样宽的基本脉冲UP 和DN,使电荷泵的灌电流和源 电流相等,这样输出的净电流为0 ,保持VCO 的控制电压不变。

  由于电荷泵是个对电流匹配程度要求极高结构,因此在设计尺寸方面,要增大电流源的沟道长度, 以减小沟道长度调制效应的影响,这种结构下电荷泵电流失配率仅为2.18%。

  2.3 压控振荡器(VCO)

  VCO 由五级差分延时单元构成的环行振荡器。环行振荡器对VCO 性能起着决定性的作用,它的关键 性能指标包括线性度、相位噪声和抖动,因此设计从这三个方面考虑进行优化。 本文的延时单元是在传统的差分结构上改进而来的,改进后的结构如图3 所示。

  通过改变延时单元的 控制电压来改变每个单元的延时,调节频率的变化,电流源的偏置电压bias 是控制电压Vctrl 经过偏置电 路产生的,两者满足一定的函数关系,它们共同变化使VCO 的输出电压摆幅随频率变化的幅度不至于过 大,同时很好的保证了频率与控制电压的线性关系。

  延时单元选用采用差分结构是因为它有较好的噪声抑制作用,消除了噪声耦合中一次项分量,大大减小了电源噪声的影响,N 阱也对P 衬底的噪声进行了隔离;选用PMOS 差分对是考虑到PMOS 管比 NMOS 管有较小的1/f 噪声和较小的噪声跨导,对同样的噪声电压,跨导小的PMOS 管的输出和噪声电 流小,引起的相位噪声小。由其上边的电流源偏置,对称负载是由二极管连接的NMOS 和同样尺寸的 NMOS 电流源并联组成的。

分频器相关文章:分频器原理


评论


相关推荐

技术专区

关闭