新闻中心

EEPW首页>EDA/PCB>设计应用> 基于FPGA的IRIG-B编码器的设计

基于FPGA的IRIG-B编码器的设计

作者: 时间:2012-08-27 来源:网络 收藏

4.2AC编码模块

4.2.1 数字调制原理

按照奈奎斯特抽样定理,只要抽样频率高于2倍信号的最高频率,则整个连续信号就能完全用它的抽样值来代表。使用抽样值构成的序列经DAC和低通滤波后即可恢复原来的连续信号。

若对频率为f的正弦波抽样N次(N>2f),并在T=1/f内通过DAC等间隔输出N次抽样值,则低通滤波后可恢复原始正弦信号。各个采样点值为:

Ck=Asin(ωkt)=Asin[ωk(T/N)] (1)

式中:ω=2πf;f为信号频率。则式(1)变为:

Ck=Asin[2πfk(T/N)]=Asin(2kπ/N) (2)

4.2.2 正弦查找表

这里给出利用查找表实现交流数字调制的方法。在获得的直流编码后,将该信号导入到数字调制模块,即可获得交流编码。对正弦信号进行100次等间隔抽样,对式(2)使用实际的增益和直流偏移,可得式(3)。据此获得查找表。

Ck=Acsin(2πk/N)+A0 (3)

式中:N=100为采样率;k=0,1,2,…,N-1;Ck对应第k次抽样获得的值;A0为保证输出信号为单极性而设置的初始直流偏移;Ac为考虑调制比和DAC满幅度码值的系数。

由于交流信号频率为1 kHz,周期为T=1 ms,若在1 ms内将上述抽样值等间隔输出到DAC,即可获得1 kHz的调制信号。

本文使用MAX5712和单电源rail-rail运放AD8601构成滤波器。在MAX5712满幅输出时,C=4 095(12 bit DAC),选择调制比为1:5。综合考虑,在最大输出时,不能使DAC输出到达运放的上轨,最低输出时,DAC输出应高于运放的下轨,所以选取A0=C/2+200=2 248。对应逻辑0,Ac=461;对应逻辑1,Ac=1 844。根据上述原则计算出的正弦查找表如表1所示。

实际使用时,应根据使用DAC的解析度、运放的动态范围以及采样率及调制比确定上式中的参数。

4.2.3 DAC接口

实际使用时应根据DAC的不同,在中构建不同的数字接口。MAX5712需要在实现一个SPI接口,结构如图4所示。接口控制部分提供一个16 b写端口,可以接收数据。在写使能wren为高时,接口上的数据写入内部并行保持寄存器。在LDAC脉冲的上升沿,并行寄存器THR的内容写入移位寄存器,同时启动时钟逻辑。在输出时钟作用下,数据从Dout输出到DAC,在SPI_CS的后沿,DAC启动转换输出与当前编码相匹配的模拟量。

4.2.4 交流调制方法

把按照第4.2.1节方法生成的正弦查找表生成Altera mif文件,再例化一个M4K ROM,使用上述文件作为ROM的初始化文件。建立一个周期为10μs的定时器和一个地址计数器。地址计数器和定时器在B码直流信号的变化沿复位,定时器溢出后启动地址计数器。或者把逻辑0对应的查找表放在ROM的上半部,如果把逻辑1对应的查找表放在ROM的下半部,且输入的直流B码信号作为地址的高位,则此时刻对应的ROM输出即为DAC的调制输出,ROM查找表VHDL的代码实现如下:

其中:B为来自的直流编码;AQC为地址计数器;ddata为输出到DAC的数字调制输出。由于查找表是按照对正弦信号做100次等间隔采样形成的,交流载波为1 kHz。所以AQC每隔10μs自加1,顺序输出100个编码值,在B码的每个变化边沿复位。

按上述方法设计的数字调制模块,用示波器测得输出波形如图5所示。



关键词:IRIG-BFPGA编码器

评论


相关推荐

技术专区

关闭