新闻中心

EEPW首页>汽车电子>设计应用> 基于μC/OS-Ⅱ的线控转向FlexRay通信控制

基于μC/OS-Ⅱ的线控转向FlexRay通信控制

作者: 时间:2010-04-29 来源:网络 收藏
3.2通信任务设计
以Freescale公司开发的针对该芯片的通讯传输层和表示层的驱动程序为基础,进行应用层的程序设计,即编写通信任务程序,完成协议的运行过程。
3.2.1通信启动任务
按照上文介绍的协议中定义的协议运行过程,当对FlexRay通信进行初始配置后,协议将进入就绪状态,之后发送启动节点命令等待协议状态由启动状态变为正常主动状态;在正常主动状态中,首先发送关键帧启动网络中的其他节点,发送完成后进入到节点唤醒状态,然后开启FlexRay通信的各种中断,包括:传输中断、接收中断、存储区中断以及定时器中断等,最后挂起任务等待检测到通信故障时进行唤醒;协议正常被动状态是在通信出现故障时,重新配置协议,进行协议的重启。需要注意的是用户必须在多任务系统启动以后再开启时钟节拍器,也就是在调用Osatart()之后,由任务优先级最高的那个任务开启RTI中断,否则系统容易死锁。程序流程图如图2所示。

本文引用地址://m.amcfsurvey.com/article/197684.htm


3.2.2 数据接收发送任务
FlexRay数据的接收发送是通过中断服务程序进行的,因此在该任务中,只需判断POC状态是否进入正常主动状态,如果是则使用全局变量对接收函数Fr_receive_da()和发送函数Fr_transmit_data()的消息缓冲区进行数据的读取和更新。
3.2.3 故障检测任务
在通信过程中,当其他节点因故障重启或是通信线路中断时,可以利用故障检测任务检查POC状态,当协议运行在正常被动状态时,则判断为通信线路出现故障,将故障LED指示灯设定为闪烁状态;当协议运行在暂停状态时,则判断为节点控制器故障,故障LED指示灯设定为常亮状态,并对FlexRay通信启动任务进行解挂,重新对协议进行配置,待故障解决,系统可以自动启动节点运行。程序流程图如图3所示。



4 实验验证
使用Vector公司的CANoe软件,可以方便地观察FlexRay总线上的数据流情况。实验中,将CANoe软件提供的FlexRay接口板VN3600接入总线网络中,之后参考MC9S12XF512芯片手册中FlexRay通信的MicroTick定义为25 ns,因此在FlexRay初始化定义中,设置参数P_MICRO_PER_M-ACRO_NOM为40,则一个MareroTick等于40个MicroTick,也就是说,FlexRay通信配置的基准时间片为lμs。据此,配置通信周期为5 000 μs;1个静态时槽长度为24μs,共有91个;1个动态时槽为5μs,共有289个;特征窗与网络空闲时间为1 371μs。
程序中对节点Node_A和Node_B的时槽定义如表2所示。


实验结果如图4所示,运行时间2 289 s,时槽变化与周期数均与设计一致,数据收发正常。由图5可知,帧速率为3 200帧/s,总计传输7 369 600帧,没有出现无效帧与错误帧,达到了实时性和稳定性的要求。


在通信过程中,分别进行故障模拟实验。
(1)突然断开总线来模拟应用现场出现线路故障的情况,可以发现数据停止更新,故障检测LED指示灯闪烁,说明程序检测到了线路故障问题并进行报警。当再次连接总线后,故障检测LED熄灭,数据继续更新,说明通信自动重新启动。
(2)将任意一个控制器进行掉电,模拟单一控制器故障情况,可以发现数据停止更新,故障检测LED指示灯开始常亮,说明程序检测到了任意节点故障导致通信中断的问题并进行报警。当再次开启掉电控制器后,故障检测LED熄灭,数据继续更新,说明通信自动重新启动。通过以上两个实验,验证了故障检测报警功能良好。

5 结语
针对系统FlexRay通信过程中存在的问题,将实时操作系统μC/-Ⅱ应用于系统中,进行了代码移植和通信任务设计。之后通过硬件实验,对数据结果和故障检测进行了测试,从实验结果可以看出,该系统解决了FlexRay总线应用的复杂问题,并利用μC/-Ⅱ操作系统保证了系统实时性、稳定性和安全性的要求,为今后实现系统在汽车辅助驾驶和智能驾驶方面的应用奠定了基础。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭