新闻中心

EEPW首页>嵌入式系统>设计应用> FLASH存储-----NAND FLASH

FLASH存储-----NAND FLASH

作者: 时间:2016-11-21 来源:网络 收藏
二.NANDFLASH

NAND FLASH在对大容量的数据存储需要中日益发展,到现今,所有的数码相机、多数MP3播放器、各种类型的U盘、很多PDA里面都有NAND FLASH的身影。

本文引用地址: //m.amcfsurvey.com/article/201611/319500.htm

1.Flash的简介

NOR Flash:

u程序和数据可存放在同一片芯片上,拥有独立的数据总线和地址总线,能快速随机地读取,允许系统直接从Flash中读取代码执行,而无需先将代码下载至RAM中再执行

u可以单字节或单字编程,但不能单字节擦除,必须以块为单位或对整片执行擦除操作,在对存储器进行编程之前需要对块或整片进行预编程和擦除操作。

NAND FLASH

u以页为单位进行读写操作,1页为256B或512B;以块为单位进行擦除操作,1块为4KB、8KB或16KB。具有快编程和快擦除的功能

u数据、地址采用同一总线,实现串行读取。随机读取速度慢且不能按字节随机编程

u芯片尺寸小,引脚少,是位成本(bit cost)最低的固态存储器

u芯片存储位错误率较高,推荐使用ECC校验,并包含有冗余块,其数目大概占1%,当某个存储块发生错误后可以进行标注,并以冗余块代替

uSamsung、TOSHIBA和Fujistu三家公司支持采用NAND技术NAND Flash。目前,Samsung公司推出的最大存储容量可达8Gbit。NAND主要作为SmartMedia卡、Compact Flash卡、PCMCIA ATA卡、固态盘的存储介质,并正成为Flash磁盘技术的核心。

2.NAND FLASH和NOR FLASH的比较

1)性能比较

flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash器件的写入操作只能在空或已擦除的单元内进行,所以大多数情况下,在进行写入操作之前必须先执行擦除。NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为0。

由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND器件是以8~32KB的块进行的,执行相同的操作最多只需要4ms。

执行擦除时块尺寸的不同进一步拉大了NOR和NADN之间的性能差距,统计表明,对于给定的一套写入操作(尤其是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。这样,当选择存储解决方案时,设计师必须权衡以下的各项因素。

  ● NOR的读速度比NAND稍快一些。

  ● NAND的写入速度比NOR快很多。

  ● NAND的4ms擦除速度远比NOR的5s快。

  ●大多数写入操作需要先进行擦除操作。

  ● NAND的擦除单元更小,相应的擦除电路更少。

2)接口差别

NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。

NAND器件使用复杂的I/O口来串行地存取数据,共用8位总线(各个产品或厂商的方法可能各不相同)。8个引脚用来传送控制、地址和数据信息。NAND读和写操作采用512字节的页和32KB的块为单位,这一点有点像硬盘管理此类操作,很自然地,基于NAND的存储器就可以取代硬盘或其他块设备。

3)容量和成本

NAND flash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格,大概只有NOR的十分之一。

NOR flash占据了容量为1~16MB闪存市场的大部分,而NAND flash只是用在8~128MB的产品当中,这也说明NOR主要应用在代码存储介质中,NAND适合于数据存储,NAND在CompactFlash、Secure Digital、PC Cards和MMC存储卡市场上所占份额最大。

4)可靠性和耐用性

采用flahs介质时一个需要重点考虑的问题是可靠性。对于需要扩展MTBF的系统来说,Flash是非常合适的存储方案。可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR和NAND的可靠性。

在NAND闪存中每个块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8倍,每个NAND存储器块在给定的时间内的删除次数要少一些。

5)位交换(错误率)

所有flash器件都受位交换现象的困扰。在某些情况下(很少见,NAND发生的次数要比NOR多),一个比特位会发生反转或被报告反转了。一位的变化可能不很明显,但是如果发生在一个关键文件上,这个小小的故障可能导致系统停机。如果只是报告有问题,多读几次就可能解决了。当然,如果这个位真的改变了,就必须采用错误探测/错误更正(EDC/ECC)算法。位反转的问题更多见于NAND闪存,NAND的供应商建议使用NAND闪存的时候,同时使用EDC/ECC算法。

这个问题对于用NAND存储多媒体信息时倒不是致命的。当然,如果用本地存储设备来存储操作系统、配置文件或其他敏感信息时,必须使用EDC/ECC系统以确保可靠性。

6)坏块处理

NAND器件中的坏块是随机分布的。以前也曾有过消除坏块的努力,但发现成品率太低,代价太高,根本不划算。NAND器件需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。现在的FLSAH一般都提供冗余块来代替坏块如发现某个块的数据发生错误(ECC校验),则将该块标注成坏块,并以冗余块代替。这导致了在NAND Flash中,一般都需要对坏块进行编号管理,让每一个块都有自己的逻辑地址。

7)易于使用

可以非常直接地使用基于NOR的闪存,可以像其他存储器那样连接,并可以在上面直接运行代码。由于需要I/O接口,NAND要复杂得多。各种NAND器件的存取方法因厂家而异。在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。向NAND器件写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。

8)软件支持

当讨论软件支持的时候,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优化。在NOR器件上运行代码不需要任何的软件支持,在NAND器件上进行同样操作时,通常需要驱动程序,也就是内存技术驱动程序(MTD),NAND和NOR器件在进行写入和擦除操作时都需要MTD。使用NOR器件时所需要的MTD要相对少一些,许多厂商都提供用于NOR器件的更高级软件,这其中包括M-System的TrueFFS驱动,该驱动被Wind River System、Microsoft、QNX Software System、Symbian和Intel等厂商所采用。驱动还用于对DiskOnChip产品进行仿真和NAND闪存的管理,包括纠错、坏块处理和损耗平衡。

在掌上电脑里要使用NAND FLASH存储数据和程序,但是必须有NOR FLASH来启动。除了SAMSUNG处理器,其他用在掌上电脑的主流处理器还不支持直接由NAND FLASH启动程序。因此,必须先用一片小的NOR FLASH启动机器,在把OS等软件从NAND FLASH载入SDRAM中运行才行。

9)主要供应商

NOR FLASH的主要供应商是INTEL ,MICRO等厂商,曾经是FLASH的主流产品,但现在被NANDFLASH挤的比较难受。它的优点是可以直接从FLASH中运行程序,但是工艺复杂,价格比较贵。

NAND FLASH的主要供应商是SAMSUNG和东芝,在U盘、各种存储卡、MP3播放器里面的都是这种FLASH,由于工艺上的不同,它比NORFLASH拥有更大存储容量,而且便宜。但也有缺点,就是无法寻址直接运行程序,只能存储数据。另外NAND FLASH非常容易出现坏区,所以需要有校验的算法。

3.NAND Flash的硬件设计

NAND FLASH是采用与非门结构技术的非易失存储器,有8位和16位两种组织形式,下面以8位的NAND FLASH进行讨论。

1)接口信号

与NOR Flash相比较,其数据线宽度只有8bit,没有地址总线,I/O接口可用于控制命令和地址的输入,也可用于数据的输入和输出,多了CLE和ALE来区分总线上的数据类别。

信号

类型

描述

CLE

O

命令锁存使能

ALE

O

地址锁存使能

nFCE

O

NAND Flash片选

NFRE

O

NAND Flash读使能

nFWE

O

NAND Flash写使能

NCON

I

NAND Flash配置

R/nB

I

NAND Flash Ready/Busy

2)地址结构

NAND FLASH主要以页(page)为单位进行读写,以块(block)为单位进行擦除。FLASH页的大小和块的大小因不同类型块结构而不同,块结构有两种:小块(图7)和大块(图8),小块NAND FLASH包含32个页,每页512+16字节;大块NAND FLASH包含64页,每页2048+64字节。

图7小块类型NAND FLASH

图8大块类型NAND FLASH

其中,512B(或1024B)用于存放数据,16B(64B)用于存放其他信息(包括:块好坏的标记、块的逻辑地址、页内数据的ECC校验和等)。NAND设备的随机读取得效率很低,一般以页为单位进行读操作。系统在每次读一页后会计算其校验和,并和存储在页内的冗余的16B内的校验和做比较,以此来判断读出的数据是否正确。

大块和小块NAND FLASH都有与页大小相同的页寄存器,用于数据缓存。当读数据时,先从NAND FLASH内存单元把数据读到页寄存器,外部通过访问NAND FLASH I/O端口获得页寄存器中数据(地址自动累加);当写数据时,外部通过NAND FLASH I/O端口输入的数据首先缓存在页寄存器,写命令发出后才写入到内存单元中。

3)接口电路设计(以下以2410和K9F1208U为例)

2410处理器拥有专门针对NAND设备的接口,可以很方便地和NAND设备对接,如图9所示。虽然NAND设备的接口比较简单,容易接到系统总线上,但2410处理器针对NAND设备还集成了硬件ECC校验,这将大大提高NAND设备的读写效率。当没有处理器的ECC支持时,就需要由软件来完成ECC校验,这将消耗大量的CPU资源,使读写速度下降。

图9S3C2410与NAND FLASH接口电路示意图

3.NAND FLASH的软件编写和调试

NAND设备的软件调试一般分为以下几个步骤:设置相关寄存器、NAND设备的初始化、NAND设备的识别、NAND设备的读擦写(带ECC校验)

NAND设备的操作都是需要通过命令来完成,不同厂家的命令稍有不同,以下一Samsung公司的K9F1208U0M命令表为例介绍NAND设备的软件编写。

表2K9F1208U0MCommand Sets

1)根据2410寄存器定义如下的命令宏

#define NF_CMD(cmd){rNFCMD=cmd;}

#define NF_ADDR(addr){rNFADDR=addr;}

#define NF_nFCE_L(){rNFCONF&=~(1<<11);}

#define NF_nFCE_H(){rNFCONF|=(1<<11);}

#define NF_RSTECC(){rNFCONF|=(1<<12);}

#define NF_RDDATA()(rNFDATA)

#define NF_WRDATA(data) {rNFDATA=data;}

#define NF_WAITRB(){while(!(rNFSTAT&(1<<0)));}

//wait tWB and check F_RNB pin.

2)NAND设备的初始化

static void NF_Init(void)//Flash初始化

{

rNFCONF=(1<<15)|(1<<14)|(1<<13)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0);//设置NAND设备的相关寄存器

NF_Reset();

}

static void NF_Reset(void)//Flash重置

{

int i;

NF_nFCE_L();

NF_CMD(0xFF);//reset command

for(i=0;i<10;i++);//tWB = 100ns

NF_WAITRB();//wait 200~500us;

NF_nFCE_H();

}

3)NAND设备的识别//#define ID_K9F1208U0M0xec76

static U16 NF_CheckId(void)//Id辨别

{

int i;

U16 id;

NF_nFCE_L();

NF_CMD(0x90);

NF_ADDR(0x0);

for(i=0;i<10;i++);//wait tWB(100ns)

id=NF_RDDATA()<<8;// Maker code(K9F1208U:0xec)

id|=NF_RDDATA();// Devide code(K9F1208U:0x76)

NF_nFCE_H();

return id;

}

4)NAND的擦操作

static int NF_EraseBlock(U32 block)

{

U32 blockPage=(block<<5);

int i;

NF_nFCE_L();

NF_CMD(0x60[q1]);// Erase one block 1st command

NF_ADDR(blockPage&0xff);// Page number="0"

NF_ADDR((blockPage>>8)&0xff);

NF_ADDR((blockPage>>16)&0xff);

NF_CMD(0xd0[q2]);// Erase one blcok 2nd command

for(i=0;i<10;i++);//wait tWB(100ns)//??????

NF_WAITRB();// Wait tBERS max 3ms.

NF_CMD(0x70);//Read status command

if (NF_RDDATA()&0x1)// Erase error

{

NF_nFCE_H();

Uart_Printf("[ERASE_ERROR:block#=%d]n",block);

return 0;

}

else

{

NF_nFCE_H();

return 1;

}

}

5)NAND的读操作

static int NF_ReadPage(U32 block,U32 page,U8 *buffer)//读Flash

{

int i;

unsigned int blockPage;

U8 ecc0,ecc1,ecc2;

U8 *bufPt=buffer;

U8 se[16];

page=page&0x1f;//32页

blockPage=(block<<5)+page;//1Bolck包含32页

NF_RSTECC();// Initialize ECC

NF_nFCE_L();

NF_CMD(0x00);// Read command

NF_ADDR(0);// Column = 0

NF_ADDR(blockPage&0xff);//

NF_ADDR((blockPage>>8)&0xff);// Block & Page num.

NF_ADDR((blockPage>>16)&0xff);//

for(i=0;i<10;i++);//wait tWB(100ns)

NF_WAITRB();// Wait tR(max 12us)

for(i=0;i<512;i++)

{

*bufPt++=NF_RDDATA();// Read one page

}

ecc0=rNFECC0;//利用2410自带的硬件ECC校验

ecc1=rNFECC1;

ecc2=rNFECC2;

for(i=0;i<16;i++)

{

se[i]=NF_RDDATA();// Read spare array

//读页内冗余的16B

}

NF_nFCE_H();

if(ecc0==se[0] && ecc1==se[1] && ecc2==se[2])//未知使用哪一种软件规范?

{//比较数据结果是否正确

Uart_Printf("[ECC OK:%x,%x,%x]n",se[0],se[1],se[2]);

return 1;

}

else

{

Uart_Printf("[ECC ERROR(RD):read:%x,%x,%x, reg:%x,%x,%x]n",

se[0],se[1],se[2],ecc0,ecc1,ecc2);

return 0;

}

}

6)NAND的写操作

static int NF_WritePage(U32 block,U32 page,U8 *buffer)//写Flash

{

int i;

U32 blockPage=(block<<5)+page;

U8 *bufPt=buffer;

NF_RSTECC();// Initialize ECC

NF_nFCE_L();

NF_CMD(0x0[q4]);//Read Mode 1

NF_CMD(0x80);// Write 1st command,数据输入

NF_ADDR(0);// Column 0

NF_ADDR(blockPage&0xff);

NF_ADDR((blockPage>>8)&0xff);// Block & page num.

NF_ADDR((blockPage>>16)&0xff);

for(i=0;i<512;i++)

{

NF_WRDATA(*bufPt++);// Write one page to NFM from buffer

}

seBuf[0]=rNFECC0;

seBuf[1]=rNFECC1;

seBuf[2]=rNFECC2;

seBuf[5]=0xff;// Marking good block

for(i=0;i<16;i++)

{

NF_WRDATA(seBuf[i]);// Write spare array(ECC and Mark)

}

NF_CMD(0x10);// Write 2nd command

for(i=0;i<10;i++);//tWB = 100ns.

NF_WAITRB();//wait tPROG 200~500us;

NF_CMD(0x70);// Read status command

for(i=0;i<3;i++);//twhr=60ns

if (NF_RDDATA()&0x1)// Page write error

{

NF_nFCE_H();

Uart_Printf("[PROGRAM_ERROR:block#=%d]n",block);

return 0;

}

else

{

NF_nFCE_H();

#if (WRITEVERIFY==1)

//return NF_VerifyPage(block,page,pPage);

#else

return 1;

#endif

}

}

以下讨论一下NAND设备上所支持的文件系统,大概现在有以下几种:

A.JFFS2(没有坏块处理,支持大容量存储的时候需要消耗大量的内存,大量的随机访问降低了NAND设备的读取效率)和YAFFS(速度快,但不支持文件的压缩和解压)

B.支持DiskOnChip设备的TRUEFFS(True Flash File System). TRUEFFS是M-Systems公司为其产品DiskOnChip开发的文件系统,其规范并不开放。

C.由SSFDC(Solid State Floppy Disk Card)论坛定义的支持SM卡的DOS-FAT。SM卡的DOS-FAT文件系统是由SSFDC论坛定义的,但它必须用在标准的块设备上。

对于大量用在各类存储卡上的NAND设备而言,他们几乎都采用FAT文件系统,而在嵌入式操作系统下,还没有驱动程序可以直接让NAND设备采用文件系统,就技术角度来说,FAT文件系统不是很适合NAND设备,因为FAT文件系统的文件分区表需要不断地擦写,而NAND设备的只能有限次的擦写。

在上面已经很明显的提到,NAND设备存在坏块,为和上层文件系统接口,NAND设备的驱动程序必须给文件系统提供一个可靠的存储空间,这就需要ECC(Error Corection Code)校验,坏块标注、地址映射等一系列的技术手段来达到可靠存储目的。

SSFDC软件规范中,详细定义了如何利用NAND设备每个页中的冗余信息来实现上述功能。这个软件规范中,很重要的一个概念就是块的逻辑地址,它将在物理上可能不连续、不可靠的空间分配编号,为他们在逻辑空间上给系统文件提供一个连续可靠的存储空间。

表3给出了SSFDC规范中逻辑地址的标注方法。在系统初始化的时候,驱动程序先将所有的块扫描一遍,读出他们所对应的逻辑地址,并把逻辑地址和虚拟地址的映射表建好。系统运行时,驱动程序通过查询映射表,找到需要访问的逻辑地址所对应的物理地址然后进行数据读写。

表3冗余字节定义

字节序号

内容

字节序号

内容

512

用户定义数据

520

后256BECC校验和

513

521

514

522

515

523

块逻辑地址

516

数据状态

524

517

块状态

525

前256BECC校验和

518

块逻辑地址1

526

519

527

表4给出了块逻辑地址的存放格式,LA表示逻辑地址,P代表偶校验位。逻辑地址只有10bit,代表只有1024bit的寻址空间。而SSFDC规范将NAND设备分成了多个zone,每个zone内有1024块,但这物理上的1024块映射到逻辑空间只有1000块,其他的24块就作为备份使用,当有坏块存在时,就可以以备份块将其替换。

表4逻辑地址格式

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

1

0

LA9

LA8

LA7

第518523字节

LA6

LA5

LA4

LA3

LA2

LA1

LA0

P

第519524字节

有了以上的软件规范,就可以对NAND设备写出较标准的ECC校验,并可以编写检测坏块、标记坏块、建立物理地址和逻辑地址的映射表的程序了。

static int NF_IsBadBlock(U32 block)//检测坏块

{

}

static int NF_MarkBadBlock(U32 block)//标记坏块

{

}

int search_logic_block(void)//建立物理地址到逻,辑地址的映射表

{

}

这段代码的主要作用就是产生数组lg2ph[],这个数组的含义就是“块物理地址=lg2ph[逻辑地址]”。




关键词:FLASH存储NANDFLAS

评论


技术专区

关闭