新闻中心

EEPW首页>嵌入式系统>设计应用> 9G-STM32 EWARM开发过程简介之五

9G-STM32 EWARM开发过程简介之五

作者: 时间:2016-11-29 来源:网络 收藏

/**
* @brief This routine is for writing one or several 2048 Bytes Page size.
* @param pBuffer: pointer on the Buffer containing data to be written
* @param PageAddress: First page address
* @param NumPageToWrite: Number of page to write
* @retval : New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*/

uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, uint32_t PageAddress, uint32_t NumPageToWrite)
{
uint32_t index = 0x00, numpagewritten = 0x00,addressstatus = NAND_VALID_ADDRESS;
uint32_t status = NAND_READY, size = 0x00;
uint32_t data = 0xff;

while((NumPageToWrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
{
/* Page write command and address */
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;

*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(PageAddress);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(PageAddress);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

/* Calculate the size */
size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpagewritten);

/* Write data */
for(; index < size; index++)
{
*(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
}

*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE1;

while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

/* Check status for successful operation */
status = FSMC_NAND_GetStatus();

data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
if(!(data&0x1)) status = NAND_READY;

if(status == NAND_READY)
{
numpagewritten++; NumPageToWrite--;

/* Calculate Next small page Address */
if(PageAddress++ > (NAND_MAX_ZONE*NAND_ZONE_SIZE*NAND_BLOCK_SIZE))
{addressstatus = NAND_INVALID_ADDRESS;}
}
}

return (status | addressstatus);
}

/**
* @brief This routine is for sequential read from one or several
* 2048 Bytes Page size.
* @param pBuffer: pointer on the Buffer to fill
* @param PageAddress: First page address
* @param NumPageToRead: Number of page to read
* @retval : New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*/


uint32_t FSMC_NAND_ReadSmallPage(uint8_t *pBuffer, uint32_t PageAddress, uint32_t NumPageToRead)
{
uint32_t index = 0x00, numpageread = 0x00, addressstatus = NAND_VALID_ADDRESS;
uint32_t status = NAND_READY, size = 0x00;

*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READ1;

while((NumPageToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
{
/* Page Read command and page address */

*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(PageAddress);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(PageAddress);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READ2;

while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

/* Calculate the size */
size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpageread);

/* Get Data into Buffer */
for(; index < size; index++)
{
pBuffer[index]= *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
}

numpageread++;NumPageToRead--;

/* Calculate page address */
if(PageAddress++ > (NAND_MAX_ZONE*NAND_ZONE_SIZE*NAND_BLOCK_SIZE))
{addressstatus = NAND_INVALID_ADDRESS;}
}

status = FSMC_NAND_GetStatus();

return (status | addressstatus);
}

/**
* @brief This routine erase complete block from NAND FLASH
* @param PageAddress: Any address into block to be erased
* @retval :New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
*/

uint32_t FSMC_NAND_EraseBlock(uint32_t PageAddress)
{
uint32_t data = 0xff, status = NAND_ERROR;

*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE0;

*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE1;

while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

/* Read status operation ------------------------------------ */
FSMC_NAND_GetStatus();

data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);

if(!(data&0x1)) status = NAND_READY;

return (status);
}

/**
* @brief This routine reset the NAND FLASH
* @param None
* @retval :NAND_READY
*/

uint32_t FSMC_NAND_Reset(void)
{
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_RESET;

return (NAND_READY);
}

/**
* @brief Get the NAND operation status
* @param None
* @retval :New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
*/


uint32_t FSMC_NAND_GetStatus(void)
{
uint32_t timeout = 0x1000000, status = NAND_READY;

status = FSMC_NAND_ReadStatus();

/* Wait for a NAND operation to complete or a TIMEOUT to occur */
while ((status != NAND_READY) &&( timeout != 0x00))
{
status = FSMC_NAND_ReadStatus();
timeout --;
}

if(timeout == 0x00)
{
status = NAND_TIMEOUT_ERROR;
}

/* Return the operation status */
return (status);
}

/**
* @brief Reads the NAND memory status using the Read status command
* @param None
* @retval :The status of the NAND memory. This parameter can be:
* - NAND_BUSY: when memory is busy
* - NAND_READY: when memory is ready for the next operation
* - NAND_ERROR: when the previous operation gererates error
*/

uint32_t FSMC_NAND_ReadStatus(void)
{
uint32_t data = 0x00, status = NAND_BUSY;

/* Read status operation ------------------------------------ */
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_STATUS;
data = *(__IO uint8_t *)(Bank_NAND_ADDR);

if((data & NAND_ERROR) == NAND_ERROR)
{
status = NAND_ERROR;
}
else if((data & NAND_READY) == NAND_READY)
{
status = NAND_READY;
}
else
{
status = NAND_BUSY;
}

return (status);
}
2,fsmc_nand.h文件:
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __FSMC_NAND_H
#define __FSMC_NAND_H

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"

/* Exported types ------------------------------------------------------------*/
typedef struct
{
uint8_t Maker_ID;
uint8_t Device_ID;
uint8_t Third_ID;
uint8_t Fourth_ID;
}NAND_IDTypeDef;

typedef struct
{
uint16_t Zone;
uint16_t Block;
uint16_t Page;
} NAND_ADDRESS;

/* Exported constants --------------------------------------------------------*/
/* NAND Area definition for STM3210E-EVAL Board RevD */
#define CMD_AREA (uint32_t)(1<<16) /* A16 = CLE high */
#define ADDR_AREA (uint32_t)(1<<17) /* A17 = ALE high */
#define DATA_AREA ((uint32_t)0x00000000)

/* FSMC NAND memory command */
#defineNAND_CMD_READ1 ((uint8_t)0x00)
#define NAND_CMD_READ2 ((uint8_t)0x30)

#define NAND_CMD_WRITE0 ((uint8_t)0x80)
#define NAND_CMD_WRITE1 ((uint8_t)0x10)

#define NAND_CMD_MOVE0 ((uint8_t)0x00)
#define NAND_CMD_MOVE1 ((uint8_t)0x35)
#define NAND_CMD_MOVE2 ((uint8_t)0x85)
#define NAND_CMD_MOVE3 ((uint8_t)0x10)

#define NAND_CMD_ERASE0 ((uint8_t)0x60)
#define NAND_CMD_ERASE1 ((uint8_t)0xD0)

#define NAND_CMD_READID ((uint8_t)0x90)
#define NAND_CMD_IDADDR ((uint8_t)0x00)

#define NAND_CMD_STATUS ((uint8_t)0x70)
#define NAND_CMD_RESET ((uint8_t)0xFF)

/* NAND memory status */
#define NAND_VALID_ADDRESS ((uint32_t)0x00000100)
#define NAND_INVALID_ADDRESS ((uint32_t)0x00000200)
#define NAND_TIMEOUT_ERROR ((uint32_t)0x00000400)
#define NAND_BUSY ((uint32_t)0x00000000)
#define NAND_ERROR ((uint32_t)0x00000001)
#define NAND_READY ((uint32_t)0x00000040)

/* FSMC NAND memory parameters */
//#define NAND_PAGE_SIZE ((uint16_t)0x0200) /* 512 bytes per page w/o Spare Area */
//#define NAND_BLOCK_SIZE ((uint16_t)0x0020) /* 32x512 bytes pages per block */
//#define NAND_ZONE_SIZE ((uint16_t)0x0400) /* 1024 Block per zone */
//#define NAND_SPARE_AREA_SIZE ((uint16_t)0x0010) /* last 16 bytes as spare area */
//#define NAND_MAX_ZONE ((uint16_t)0x0004) /* 4 zones of 1024 block */

/* FSMC NAND memory HY27UF081G2A-TPCB parameters */
#define NAND_PAGE_SIZE ((uint16_t)0x0800) /* 2048 bytes per page w/o Spare Area */
#define NAND_BLOCK_SIZE ((uint16_t)0x0040) /* 64x2048 bytes pages per block */
#define NAND_ZONE_SIZE ((uint16_t)0x0200) /* 512 Block per zone */
#define NAND_SPARE_AREA_SIZE ((uint16_t)0x0040) /* last 64 bytes as spare area */
#define NAND_MAX_ZONE ((uint16_t)0x0002) /* 2 zones of 1024 block */

/* FSMC NAND memory data computation */
#define DATA_1st_CYCLE(DATA) (uint8_t)((DATA)& 0xFF) /* 1st data cycle */
#define DATA_2nd_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF00) >> 8) /* 2nd data cycle */
#define DATA_3rd_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF0000) >> 16) /* 3rd data cycle */
#define DATA_4th_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF000000) >> 24) /* 4th data cycle */

/* FSMC NAND memory HY27UF081G2A-TPCB address computation */
#define ADDR_1st_CYCLE(PADDR) (uint8_t)(0x0) /* 1st addressing cycle */
#define ADDR_2nd_CYCLE(PADDR) (uint8_t)(0x0)/* 2nd addressing cycle */
#define ADDR_3rd_CYCLE(PADDR) (uint8_t)(PADDR & 0xFF) /* 3rd addressing cycle */
#define ADDR_4th_CYCLE(PADDR) (uint8_t)((PADDR>>8) & 0xFF)/* 4th addressing cycle */

/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
void FSMC_NAND_Init(void);
void FSMC_NAND_ReadID(NAND_IDTypeDef* NAND_ID);
uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, uint32_t Address, uint32_t NumPageToWrite);
uint32_t FSMC_NAND_ReadSmallPage (uint8_t *pBuffer, uint32_t Address, uint32_t NumPageToRead);
uint32_t FSMC_NAND_MoveSmallPage (uint32_t SourcePageAddress, uint32_t TargetPageAddress);
//uint32_t FSMC_NAND_WriteSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaTowrite);
//uint32_t FSMC_NAND_ReadSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaToRead);
uint32_t FSMC_NAND_EraseBlock(uint32_t Address);
uint32_t FSMC_NAND_Reset(void);
uint32_t FSMC_NAND_GetStatus(void);
uint32_t FSMC_NAND_ReadStatus(void);
//uint32_t FSMC_NAND_AddressIncrement(NAND_ADDRESS* Address);

#endif /* __FSMC_NAND_H */
七,NFTL代码层
有关NFTL代码,自行处理。

本文引用地址://m.amcfsurvey.com/article/201611/323209.htm

上一页 1 2 下一页

评论


技术专区

关闭