新闻中心

EEPW首页>测试测量>设计应用> 关于示波器的采样率

关于示波器的采样率

作者: 时间:2017-01-05 来源:网络 收藏

图5 示波器实际工作中的当前采样率是受限于存储深度的

3,实时采样率 VS等效采样率(随机采样模式,插值算法)

前面提到的最高采样率和当前采样率及采样率都默认为“实时采样率”(real-time sampling rate),最高采样采样率即为最高实时采样率,当前采样率即为当前实时采样率。 和实时采样率相对应的一个名词是“等效采样率(effective sampling rate)"。等效采样率一般是指示波器工作在一种特别的采样模式(被称为随机采样模式或等效采样模式)下的术语。

如图6所示为随机采样模式的工作原理示意图。示波器在该模式下的实时采样率如图示上方的一组图形的第1次捕获,第2次捕获,……,第N次捕获,这些单次分别捕获的过程中,采样点之间的时间间隔的倒数符合我们前面所述的的采样率概念,是实时采样率。将这N次实时采样的采样点“合成”在一起的结果如图6的下图所示。这种随机采样模式要求被测信号是“周期的、重复的”信号,示波器要能识别出这种信号每一帧的“起始”和“结束”,在“起始”位置开始第1次采样,然后间隔 进行第2次采样,再间隔 进行第3次采样,……。 那么这个 就是等效采样周期,它的倒数就是等效采样率。这种模式下等效采样率可以达到几十GSa/s。这种采样模式也正是采样示波器的基本工作原理。采样示波器的实时采样率只有200KSa/s,但等效采样率可以做到很大。对于纯粹的正弦波信号的测量,使用等效采样模式是有效的。但是,实际被测信号往往并不是“周期的、重复的”的信号,该工作模式的使用场合并不多。

图6 随机采样模式工作原理示意图

另外一种等效采样率的说法和示波器的插值有关。在实时采样得到的离散的点和点之间插入若干个通过某种算法获得的“假点”的方法就叫插值。这里用“假点”这个说法是区别实时采样的点,便于理解。两个实时采样的点之间增加了9个点,等效采样率就相当于增加了10倍。

在实时采样率是足够的情况下,插值可以增加计算结果的精度;但在实时采样率不够,而且被测信号是脉冲方波的情况下,插值会带来过冲和下冲的“假象”,让用户误以为被测信号并没有失真,但其实已经严重失真了。如图7所信号有过冲和下冲,这是否代表了信号的真实情况呢? 实际上该信号并不存在这些过冲和下冲,只是实时采样率不足,又采用了正弦型插值算法。 提高实时采样率之后的信号如图8所示。

图7 带有过冲和下冲“假像”的信号

图8 实时采样率足够的情况下,信号的真实情况

正弦型(sin(x)/x)插值是示波器中最常用的一种插值算法。该算法就是根据已有的N个点来计算第N+1个点,算法的物理意义就是假设信号在按正弦规律变化。因此图7在采样率不够的情况下会出现局部正弦型的过冲和下冲。当被测信号是正弦型信号时,即使实时采样率不够,利用 sin(x)/x插值算法,获得的插值后的波形看起来就更接近真实的正弦型信号了。如图9所示就是这种插值算法的好处的体现。

图9 对于正弦型信号,采用sin(x)/x插值可以弥补实时采样率的不足

4,欠采样的影响

要确保过采样,而不要欠采样。欠采样就是指采样率不够,示波器不能真实地还原原始波形,表现为波形局部细节丢失、失真、混叠等现象。如图10所示采样率不够导致脉冲消失,因为这个脉冲很窄。如图11所示采样率不够导致波形失真,信号上本来存在的“震荡波形”不能真实地还原。如图12所示采样率严重不够导致混叠,信号本来是左图中黑线表示的正弦波,测量到的信号也仍然是正弦波,但频率发生了改变。

图10 采样率不够导致"脉冲消失"

图11 采样率不够导致"失真"

图12 采样率不够导致"混叠"

在采样率严重不足的情况下,示波器无法稳定触发。如图13所示为使用中国首款智能示波器SDS3000测量一个普通的1KHz方波的效果,虽然触发方式为上升沿触发,触发的各项设置都正常,但触发电平并没有和触发点相交,信号有明显的过冲震荡。 在欠采样的情况,测量到的参数存在误差,特别是峰峰值和上升时间、下降时间等参数误差很大,图中的上升时间测量项提示有黄色的感叹号,就表示当前采样率不够,显示的测量结果中有“<”的符号,表示当前信号实际上升时间应小于这个数值。对比图14是采样率足够的情况下的测量结果,上升时间只有68ns,峰峰值的测量结果误差也和图13的测量结果不一样。这个对比让我们深刻体会到采样率不足带来的影响。信号整体看起来仍然是方波,只是波形上有过冲震荡,但其实是严重失真了。



关键词:示波器采样

评论


技术专区

关闭