新闻中心

EEPW首页>测试测量>设计应用> 内建式抖动测量技术(下)

内建式抖动测量技术(下)

作者: 时间:2017-01-09 来源:网络 收藏



抖动数值对应分析

经过长时间运算后,在半周期正弦抖动部份,图二十二左明显可看出其为一高斯分布,具有一个峰值,此值就落于正弦抖动的最大值上。而右图振幅调变抖动之测试结果,则显示双峰之抖动分布,且其双峰的分布量也不尽相同。这是因为振幅调变讯号每个峰值电压不同,而不同的峰值会对应到不同的数位码,所以在长时间抖动测试下才会出现此分布情形。

藉由以上的说明可得知,我们所提出之抖动测系统不但可以成功量化抖动量,并可藉由长时间的分析,可进一步地得知抖动分布型态,更可从中运算出抖动峰值、抖动均方根植、n倍sigma的抖动分布量…等等。

《图二十二 长时间累计抖动运算结果》

所提出测试法之测试结果

《图二十三 抖动产生示意图与实际测试图》


利用宽频抖动测试讯号

在量测环境的建构上,我们可分为两个部份:一为针对抖动放大电路作测试,另一则为全系统测试。在先前架构说明中提到,我们所提出的测试架构是针对待测讯号之周期对周期抖动作测试,因此需要一延迟电路,将每个周期讯号与延迟一个周期时间之讯号萃取出来。但为了要验证抖动放大电路操作特性,我们也需要一非常宽频与宽范围抖动测试讯号,因此采用图二十三的测试法。

亦即我们利用两台高频讯号产生器,分别产生代表SUT与SUTd之待测时脉讯号,因为时脉已强制同步,所以若不改变任何参数时,SUT与SUTd之讯号将保持同相位。而为了测试抖动放大电路的放大特性,可藉由调整其中一台讯号产生器之延迟量,来仿造实际时脉抖动情形。


如图中可以观察出,若调整讯号产生器2的延迟量,可实现落后抖动分量;若调整讯号产生器1的延迟量,则可实现领前抖动分量,藉此调整将可达到宽抖动范围之测试。此外因讯号产生器可产生大范围频率调整,所以也可进一步测试抖动放大器线性度。

《图二十四 抖动放大电路量测环境示意图》


分析测试过程

图二十四为抖动放大电路测试环境示意图,其输入讯号为前述两台讯号产生器所提供之讯号。于晶片中前端会先有预先放大器(pre-amplifier)将输入转换为方波,随之送入脉波吞噬电路与抖动放大电路中。当抖动量经电路放大后,我们利用示波器来观测输出讯号间的相位差,再将输出相位差(JACK-JARef)除以输入相位差(SUT-SUTd),即可得到抖动放大电路之放大倍率。

此外当输入讯号频率改变时,可藉由调整S1和S0来选择较为适当的脉波吞噬数;而若当抖动放大电路于制作时发生漂移,则可藉由调整外部电阻RExt进而改变电流量,以确保抖动放大量的准确性。因此由以上所述之方法,将可测试出抖动放大倍率之线性度(JitterIn vs. JitterOut)、操作频宽(频率 vs. 放大倍率)与放大倍率和脉波吞噬数间的关系。

《图二十五 抖动量测系统之量测环境示意图》


抖动量测环境分析过程

另外图二十五为抖动量测试系统之量测环境示意图。其前端和图二十四做法一致,但因抖动放大电路后接上时间-数位转换电路,因此已将抖动量化成数位码,所以我们藉由逻辑分析仪(Logic Analysis;LA)来运算即时输出之数位码;经一段有效时间运算后,再把逻辑分析仪所输出之结果与输入抖动量相比较,即可得知所提出之系统准确度。

《图二十六 输入抖动与输出抖动之量测图:随着箭头方向代表输入抖动递增》


首先,我们将所提出的抖动放大电路,使其操作在不同输入抖动量下,观察放大倍率间的变化,如图二十六所示。为了测试纪录方便,我们采用6个测试pattern来验证,也就是说利用6个不同的输入抖动量送入抖动放大电路中,然后量测输出抖动量,以绘出抖动放大曲线图。此外为了验证我们所提出的脉波吞噬观念可修正放大线性度,所以也针对四个频段做验证。

《图二十七 抖动放大倍率vs.操作频率》


抖动放大电路测试结果

图二十七即为抖动放大电路测试结果。从图中可观察出,在低频操作时,因为稳态区域足够,所以其输出抖动与输入抖动比,与当初所设计的相距不远。但随着待测讯号频率上升、稳态区间缩小,在不调整脉波吞噬数目的条件下,放大倍率会随之缩小,甚至放大倍率消失,导致系统操作错误。以800-MHz的条件为例,此区段放大倍率已下降至约2倍左右,此时已完全无法弥补时间-数位转换电路解析度不足的缺点。因此从此测试可观察出,虽于各频段内放大倍率皆可维持放大倍固定,但只要输入讯号频率一变化,就会造成放大倍率失真以至于会有误判的情形。因此接下来将依前述的说明适当切换脉波吞噬数,来达到宽频之放大倍率。


评论


技术专区

关闭