新闻中心

EEPW首页>模拟技术>设计应用> 测试测量设计实例(一)

测试测量设计实例(一)

作者: 时间:2012-03-22 来源:网络 收藏
差90度的正弦/余弦信号,每一相都采用差分输出方式(+Sine, -Sine, +Cosine, - Cosine),这有助于消除同相噪声带来的误差,

《国际电子商情》《国际电子商情》

  决定水表计量精度主要有两个主要因素:

  1.传感器准确感应基表叶轮转过的圈数

  2.每一圈流过的水量

  由于采用磁阻检测计量,减少了传统电子水表必需的多个计数齿轮,简化了机械运动部件的设计,减小了叶轮的负载,对小流速水流提高了检测灵敏度,提升了水表始动流量检测的性能;A,B输出连续的波形,根据相位差最小可以检测到叶轮1/8周的转动,并依据特定相位差的时间序列可以用于水流方向的检测和计量,对于叶轮抖动或其它因素造成的异常时间序列可以予以筛除,提高了圈数统计的准确性,特别是小水流情况下的测量精准度。

  一般来说,水表在不同流速下的误差是不同的(高流速误差小、低流速误差大),该方案由于可以测量水表当前的流速,可以通过对不同流速的误差进行软件修正和补偿,由于涉水部分机械运动部件简单,测量的重复性好,配合计量标定过程,在机械结构基本不变的前提下,大大提高了水表水量检测的准确度等级。

  另外方案还可以支持多种滴漏,水流反向等检测功能,为远程控制提供了必要的技术手段。

  系统简单,高度集成,外围器件少,可靠性提高

  除了传统的机械部分外,系统主要的元器件为专用处理芯片S1C17M01和AMR传感器芯片。专为流量检测设计的S1C17M01 内部集成AMR控制器,包括模拟前端(AFE),带磁滞功能的比较器,相位/圈数计数器等功能电路,可以直接连接AMR传感器毫伏级输出,减少了以往多个外围分离器件;丰富的周边电路包括128段液晶驱动器,定时器、实时时钟、低电压检测,R/F转换器,多种串行接口等,可以方便的连接段码液晶,温度传感器,外部存储,通信模块等器件。

  因为采用非接触的磁场检测技术,避免了传统机械/磁簧开关使用寿命和抗震动和碰撞的问题;将两个全桥磁阻电路集成于一体,避免的分离模式下器件组装的一致性问题;采用普通的铁氧体材料的磁铁,使用寿命得到了保证等等,所有这些都大大提高了系统设计的可靠性和稳定性,同时也降低了开发和制造成本。

《国际电子商情》

  极低的系统功耗和电源管理更适合电池供电系统

  不同与电表的设计,水表往往因为环境的限制,无法采用有源供电的方式。如何降低整机功耗,使用尽可能小的电池保证6-8年的使用寿命也一直困扰着水表的设计者。凭借着多年在低功耗产品设计积累的技术和经验,EPSON从一开始就关注方案整体的功耗,特别设计的专用处理器和选择的低功耗传感器,使系统整体工作电流在40rps转速的情况下仅为6.5uA, 无水流时系统工作电流更低至2uA(包括传感器功耗在内),

  在保证水表使用寿命的前提下,设计者可以采用更小更低成本的电池。

  完整的设计支持

  处理提供元器件方案外,EPSON还提供完整的流量检测软硬件参考设计。包括累计流量,瞬间流量,过大流量检测,逆流检测,滴漏检测,未使用检测,电压检测,脉冲输出等基本功能,用户简单设置几个参数就可以完成,并可以以此为基础定制出更多更复杂的计量功能。

  该方案还可以应用于其他流量检测的场合,例如气表、热量表中。如果对该方案感兴趣,需要更详细的产品和方案信息,请联系EPSON各地分公司电子元器件部门。

基于GP21+EFM32的超低功耗超声波热量表#e#

三、基于GP21+EFM32的超低功耗超声波热量表

  随着生活质量的提高人们对于居住舒适度的要求,我国北方地区的楼宇建设都将普遍推广热量表到户,用于冬天的暖气供应。自从2009年起,我国北方进行了供热改革,至今已卓见成效。预计未来几年按热量计费将是北方供暖改革的重要方向。而热量表更是供热系统中的关键部件,它负责热量的计算、记录和数据传送工作。超声波热量表由于其测量方式无接触部件,且具有低压降、低能量消耗、测量精度高的优势,所以它正在逐渐取代机械式的热量表,成为北方供热供暖计量方案的首选。

  基于Energymicro公司的32位Cortex-M3内核的超低功耗微控制器EFM32与ACAM公司的高集成度TDC-GP21芯片推出的超声波热量表方案,能够充分发挥EFM32的超低功耗与高运算能力的特点及GP21高精度的测量能力,它将成为超声波热量表方案中的最优之选。

  系统框架

  图 1所示,超声波热量表包括超低功耗微控制器EFM32TG840F32、时间数字转换器TDC-GP21(热敏电阻PT1000、超声波换能器)、LCD显示液晶屏、操作按键、红外通信电路及MBUS通信电路。整个系统由3.6V锂电池供电,考虑到TDC-GP21的供电电压将电压转换为3.3V。

《国际电子商情》

  图 1 超声波热量表方案框图

  硬件设计

  1、主控及显示部分

  超声波主控MCU采用EFM32TG840F32,它是基于ARM公司的32位Cortex-M3内核设计而来,对比于传统的8位、16位单片机,它具有更高的运算和数据处理能力,更高的代码密度,更低的功耗。实际数据显示,EFM32TG840在执行32位乘法运算仅需4个内核时钟周期,32位除法运算仅需8个内核时钟周期,而相应热表上运用的16位单片机却分别需要50和465个时钟周期。而恰恰在时间数据转换芯片TDC-GP21上采集得到的数据均是32位长度,因此在运算和热量计算时均是32位的数据运算。可见,采用EFM32TG840可以让超声波热量表有更好的运算性能,从而使得整机可以缩短处在运行计算状态状态,达到降低运行功耗的效果。

  EFM32TG840具有EM0-EM4共5种低功耗模式。在EM2的低功耗模式下,微控制器仍可实现RTC运行,LEUART、LETIMER及LESENSE的通信或控制功能,而功耗仅需900你A。而且它具有灵活的唤醒方式和自主工作的PRS系统,可以由外部I/O、I2C通信接口、LEUART通信信号等等方式唤醒。

  EFM32TG840集成了8×20段的LCD驱动器,满足直接驱动超声波热量表液晶屏的需求,而功耗仅为550nA。EFM32TG840的LCD驱动器内部集成电压升压功能和对比度调节功能,可实现在芯片内部VCMP电压比较器监控VDD电压,分等级开启LCD升压及对比度调节,达到LCD的现象效果良好,即使系统电池随着使用时间增加出现电压跌落现象。

《国际电子商情》title=

  图2 主控MCU及显示电路(点击查看大图)

  EFM32TG840的I/O可以设置为低功耗模式唤醒及GPIO中断模式,因此外部操作按钮可以在低功耗条件下实现交互控制动作。

  2、TDC-GP21超声波采集部分

  TDC-GP21是德国ACAM公司在2011年11月底推出的新一代专门针对超声波热量表检测计量所用的数字时间转换器。TDC-GP21芯片采用QFN32封装,除了具备TDC-GP2的功能外,还额外集成了超声波热量表所需要的信号处理模拟部分,例如模拟开关以及低噪声斩波稳定(自动进行温度电压校正)模拟信号比较器。TDC-GP21温度部分集成了施密特触发器,可直接接上温度传感器和参考电阻,就可以进行高精度的测量,测量的性能远远超过热量表所需的要求。7x32bit的EEPROM单元,可用于存储热量表整表的ID信息及配置寄存器信息。

  TDC-GP21需要两个供电电压,分别是核心电压VCC和I/O电压Vio,在本方案中采用了ACAM推荐的两个供电电压使用相同的电压源进行供电,并增加去耦双通道滤波电路以达到降低系统噪声的效果。其他部分电路例如换能器、PTC电阻的连接以及晶体的接法均采用原厂提供的官方参考电路进行搭建。在时钟方面TDC-GP21将输出32.768KHz时钟,为EFM32TG840F32提供低频时钟,可节省主控MCU的低频晶振。

《国际电子商情》title=

  图3 TDC-GP21电路图(点击查看大图)

  3、MBUS通信部分

  超声波热量表通过MBUS(Meter Bus)总线通信进行自动抄表。现场的热量表可通过MBUS将数据上传到集中器,然后

隔离器相关文章:隔离器原理


关键词:测试测量设计

评论


相关推荐

技术专区

关闭