新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 测试测量设计实例(一)

测试测量设计实例(一)

作者: 时间:2012-03-22 来源:网络 收藏
由集中器或再上一级集中器将数据通过以太网或无线GPRS通信模块将数据传输的供暖中心的后台,进行计费及管理。本方案中采用TI公司的MBUS芯片为TSS721A。TSS721A是一种用于仪表总线的收发器集成芯片,其内含接口电路可以调节仪表总线结构中主从机之间的电平,同时该收发器可由总线供电,对从机不增加功率需求,总线可无极性连接。TSS721A的连接电路如图4所示。

  《国际电子商情》

  图4 TSS721A连接电路

  4、红外通信部分

  根据《CJ/T 188-2004》技术规范文档,超声波热量表红外通信采用38KHz的载波对通信数据进行调制且有效通信距离大于2m,选用波长为940nm的红外发射管与接收管。供热管理人员可以使用手持红外抄表设备对超声波热量表进行抄表。红外通信电路如图5所示。

  《国际电子商情》

  图5 红外通信电路

  软件设计

  超声波热量表方案的软件部分可以划分为3个部分:TDC-GP21的检测计量部分、红外及MBUS的抄表通信部分、按键液晶屏的显示交互部分。

  针对TDC-GP21的检测计量软件部分可参考ACAM官方提供技术文档,它提供了TDC-GP21在单次采集的软件配置及实现过程。热量表通过计算超声波上游和下游的时间差,进而通过公式计算得到流量,然后通过对PT1000的测量和计算可以采集得到进水口热水与出水口冷水的温度差。最终通过热量熵积分Q=cmΔt,计算得到热量的值。而在实际采集当中,为了更精确的热量计算值,软件设计者可对非线性参数增加相应的补偿处理。

  对于热量表的通信抄表部分的软件设计,软件设计者在实现的红外与MBUS的底层串行通信后,可参考《CJ 188-2004 户用计量仪表数据传输技术条件》上所要求的抄表命令、抄表通信数据帧格式、抄表应答数据要求进行相应的软件编写。

  热量表的人机交互软件部分主要是根据用户的按键操作实现对应的查询数据的显示。对于EFM32TG840的液晶屏控制器底层驱动,软件设计者控制起来非常方便,在执行完LCD控制器的初始化后,向对应的SEG段寄存器操作对应的数据位,即可将液晶屏上对应的段码点亮显示。综合段码显示内容及用户操作即可实现交互部分的软件设计。

  方案优势

  基于EFM32TG840与TDC-GP21实现的超声波热量表方案具有的优势包括:

  1、相对于传统的8位、16位单片机,EFM32TG840以Cortex-M3为内核,具有更强运算处理能力,使整表的性能得到提升;

  2、EFM32TG840与TDC-GP21均具有低功耗的优势,综合使得整机的功耗更低,增长热量表的电池寿命,间接降低了整表对于电池的需求成本;

  3、EFM32TG840集成了LCD控制器、RTC,以及它的Flash可用于数据存储功能,使得整体方案的外围元件减少,降低方案成本。

  总结

  综述上文,以EFM32TG840为主控MCU,TDC-GP21为关键检测元器件而设计的超声波热量表,充分地发挥了EFM32TG840的高性能、低功耗、良好集成度的特点,结合了数字时间转换器TDC-GP21的高精度、低功耗的优势,使得它将成为供暖系统热计量部分的最佳选择。

四、微波探测声音方法的实现

  微波在现实生活中有多种用途,例如:微波通信、微波雷达、微波测速等。本文介绍一种以微波作为载波来实现探测声音的实验方法,并且在实验室进行了。从实验结果看,能达到利用微波探测声音的目的。本实验原理简明,所用微波器件为实验室常见的微波器件,电路结构简单,易于实现。

  1 实验原理

  微波探测声音的原理与广播类似,它利用高频的微波信号来“载驮”所要传送的声频信号,也就是高频微波信号的振幅随所传送的声频信号的变化而变化。高频微波信号为“载波”,调制微波的声频信号为“调制信号”。经过调制后的高频信号为调幅波。

  

测试测量设计实例(一)

  式(1)和(2)中Ω、F分别为调制信号的角频率和频率。载波为远高于调制信号频率的正弦波。

  调制的作用是使载波的振幅Vcm随调制信号vΩ而相应的变化,从而得到调幅波。调幅波振幅变化的轨迹即波峰点的连线称为包络线。调幅波包络线的瞬时值为:

  

测试测量设计实例(一)

  式(4)中,VΩm/Vcm称为调幅指数,用ma表示。

  语言、音乐等都不是单音频信号,而是由很多不同频率的波合成,它们不是标准的正弦信号。对于非正弦的周期信号,可以分解为多个不同频率的正弦波信号。典型的调幅波的频率成分,可以由它的瞬时值表示式推导出来,即

  

测试测量设计实例(一)

  这表明单音信号(即调制信号是正弦信号)的调幅波由三部分频率分量组成,即载波分量ω0、上边频分量ω0+Ω和下边频分量ω0-Ω。

  调幅信号的解调是振幅调制的反过程,是从高频已调信号中取出调制信号,常将这种解调称为检波。实现这种解调作用的电路称为振幅检波器。检波器由高频输入回路、非线性器件和低通滤波器三部分组成。因振幅调制信号由载波频率ω0和边频(ω0±Ω)组成,没有调制信号本身的频率分量Ω,但载频ω0与上边频(ω0+Ω)或下边频(ω0-Ω)之差可得到Ω。为了取出原调制信号频率Ω,从高频输入回路输入的高频已调信号,通过非线性器件产生新的频率分量,其中就包含所需的Ω分量,再用低通滤波器滤除不需要的高频分量,即可得所需的声音信号。

  2 实验装置与基本器件

  本实验装置与基本器件组成图如图1所示。微波振荡器产生的微波,经隔离器和环形器由天线投射到待测声源处,作为载波的微波被声源处的音频信号调制后被反射回来,由天线接收(发射、接收天线为同一天线),再经过微波晶体检波器检波和电流、电压及功率放大,最后还原出声源处的音频信号。实验装置中所用到的振荡器、隔离器、环形器、角锥天线和晶体检波器均为实验室中常见的3厘米波段(X波段)的微波器件。

  

测试测量设计实例(一)

  3 电路结构

  本实验所用的前置放大电路如图2所示。它包括两级,第一级由OP07构成的弱电流放大电路。由于一般情况下,检波后得到的电流形式的音频信号很微弱,为了达到较好的放大效果,实验中加了一级弱电流放大电路。根据运放电路的相关知识可知,输入电流I1流经R2和R3的流I2和I3的关系为

e.jpg

,即输出电流的放大倍数为

f.jpg

倍;第二级用NE5532运放构成一个低噪声的电压放大电路。NE5532是一种高速低噪声运算放大器。它的带宽为10 MHz,相比大多数标准运算放大器,它显示出更好的噪声性能,更高输出驱动能力和小信号带宽。

  

测试测量设计实例(一)

  自动增益放大电路(AGC)如图3所示。其基本原理是当输入信号幅度较大时,AGC电压控制可变增益放大器的放大倍数减小,当输入信号幅度较小时,AGC电压控制可变增益放大器的放大倍数增加。

  

测试测量设计实例(一)

  图3中,输入信号从运放F1的同相端输入,二极管VD对运放F1的输出信号整流后,经一个∏形滤波电路得到一个负向AGC电压,这一电压经过运放F2放大后送往场效应管3DJ6的栅极。当输入信号幅值较大时,相应地得到较大的AGC电压,运放F2输出较大的负压至场效应管3DJ6的栅极,增大了场效应管3DJ6的源漏极间的电阻,从而减小了运放F1的放大倍数;反之,当输入信号的幅值较小时,AGC电压也很小,运放F2输出也很小,场效应管3DJ6的源漏极间的电阻很低,使运放F1得到较大的放大倍数。

  

<a class=测试实例(一)" src="/uploadfile/mndz/uploadfile/201203/2012032202285 隔离器相关文章:隔离器原理


关键词: 测试 测量设计

评论


相关推荐

技术专区

关闭