新闻中心

EEPW首页>模拟技术>设计应用> Maxim用于工业超声设备的高压方案

Maxim用于工业超声设备的高压方案

作者: 时间:2012-03-16 来源:网络 收藏
。需采用两个MAX4940通道驱动一路变送器。激励电压可高达400VP-P。

BTL配置需要使用变送器的两个电极,对于各单元公共端连接到GND的大规模变送器阵列并不适用。

图12给出了一个典型的BTL应用框图,采用单极性配置(该例中是正脉冲)。变送器的负载连接在OUT1_和OUT2_之间。图13所示为一个典型的驱动波形,激励信号的幅度可以达到2 × VPP,即400VP-P。

Maxim用于工业超声设备的高压方案
图12. MAX4940的典型桥接负载(BTL)配置

Maxim用于工业超声设备的高压方案
图13. BTL架构的典型驱动波形

并联增大驱动电流

工业应用中,有时是需要大于2A的电流驱动能力。这种高驱动能力通常用于驱动高容性负载(nF量级),或工作在高频(例如,30MHz至40MHz)环境。可以将MAX4940的通道并联,以增大电流驱动(2通道 = 4A,3通道 = 6A,并依此类推)。

如图14所示,把2个通道并联驱动一个负载单元,可提供4A的单极性脉冲驱动。该图采用的是MAX4940,也可以对MAX4968进行类似配置。相关方案通用适用于双极性和单极性负脉冲应用。将通道并联,可降低输出电阻并增大驱动能力。

Maxim用于工业超声设备的高压方案
图14. 4A单极性正脉冲发生器

MAX4940也可以采用BTL配置,并联通道用来驱动一个负载单元,具有400VP-P、4A驱动能力(图15)。

Maxim用于工业超声设备的高压方案
图15. MAX4940的BTL结构,提供4A电流驱动

高频或低频应用

上面讨论的应用电路覆盖大多数情况,不过,还要特别考虑高、低频应用。对于低频信号 ( 1MHz) 的情况,大多用于声纳系统,频率范围从10kHz至200kHz。

另外,有时需要工作在更高频率(> 20MHz),往往在无损检测中用于改善轴向分辨率或发送PWM调制信号。下面讨论了这两种类型的应用。

低频( 1MHz)

MAX4940可以工作在低于1MHz的频率下。只需用足够大的电容取代信号耦合电容(上例中为3.3nF)。作为一个经验公式,可以用下式计算:

CSIGNAL= 3.3nF/频率(MHz)

例如,以100kHz应用为例,耦合电容建议采用33nF。MAX4968基于自举结构,不能工作在100kHz频率以下。

高频(> 20MHz)

MAX4940驱动电路可以工作在高频(产生短脉冲),如40MHz。然而,实际情况限制了电流驱动能力。

在一阶近似中,负载可



评论


相关推荐

技术专区

关闭