新闻中心

EEPW首页>电源与新能源>设计应用> 基于L6562芯片的高功率因数boost电路的基本原理及设计

基于L6562芯片的高功率因数boost电路的基本原理及设计

作者: 时间:2013-12-30 来源:网络 收藏
ight: 24px; color: rgb(62, 62, 62); font-family: Tahoma, Arial, sans-serif; font-size: 14px; text-align: justify; ">INV:该引脚为电压误差放大器的反相输入端和输出电压过压保护输入端;

本文引用地址://m.amcfsurvey.com/article/227151.htm

COMP:该引脚同时为电压误差放大器的输出端和芯片内部乘法器的一个输人端。反馈补偿网络接在该引脚与引脚INV之间;

MULT:该引脚为芯片内部乘法器的另一输入端;

CS:该脚为芯片内部PWM比较器的反相输入端,可通过电阻R6来检测MOS管电流;

ZCD:该脚为电感电流过零检测端,可通过一限流电阻接于Boost电感的副边绕组。R7的选取应保证流入ZCD引脚的电流不超过3 mA;

GND:该引脚为芯片地,芯片所有信号都以该引脚为参考,该引脚直接与主电路地相连;GD:为MOS管的驱动信号输出引脚。为避免MOS管驱动信号震荡,一般在GD引脚与MOS管的栅极之间连接一十几欧姆到几十欧姆的电阻,电阻的大小由实际电路决定;

VCC:芯片电源引脚。该引脚同时连接于启动电路和电源电路。

另外,在电路设计时,稳压管D2应选用15 V稳压管,电容C2应选用10μF的电解电容;二极管D5应选用快恢复二极管(如1N4148);电阻R3应选用几百千欧的电阻。

图5给出了由L6562构成的APFC电源的实际电路图。图中,输入交流电经整流桥整流后变换为脉动直流,作为Boost电路的输入;电容C4用以滤除电感电流中的高频信号,降低输入电流的谐波含量;电阻R1和R2构成电阻分压网络,用以确定输入电压的波形与相位,电容C10用以虑除3号引脚的高频干扰信号;Boost电感L的一个副边绕组,一方面通过电阻R7将电感电流过零信号传递到芯片的5脚,另一方面作为芯片正常工作时的电源;芯片驱动信号通过电阻R8和R9连到MOS管的门极;电阻R11作为电感电流检测电阻,用以采样电感电流的上升沿(MOS管电流),该电阻一端接于系统地,另一端同时接在MOS管的源极,同时经电阻R10接至芯片的4脚;电阻R5和R6构成电阻分压网络,同时形成输出电压的负反馈回路;电容C9连接于芯片1、2脚之间,以组成电压环的补偿网络;电阻R4,电容C6,二极管D5,稳压管D6和Boost电感的副边则共同构成芯片电源。

3 Boost电感的设计

本设计采用AP法则来设计Boost电感。其原理是首先根据设计要求计算所需电感:

式中,Virms为输入电压有效值;Vo为输出电压,fsw(min)为MOS管的最小工作频率,通常在20kHz以上;Pi为输入功率。计算要求的AP值为:

式中,Ku为磁芯窗口利用率,Jc为电流密度,IL(pk)为电感电流峰值。

根据(4)式的计算结果可选择磁芯的AP值(大于AP_req,AP=AeAw,单位为m4)。

然后根据所选磁芯来计算原边匝数及所需气隙。副边匝数一般按10:1选取。

4 实验波形分析

为了验证以上设计的合理性,本文设定最小输入电压为187 V,最大输入电压为264 V,输入频率为50 Hz,输出电压为400 V,PF=0.99,效率为87%,输出功率26.5 W,最小工作频率为65 kHz来进行实物实验,同时根据计算,并通过IL(pk)=465.3 mA来选



评论


相关推荐

技术专区

关闭