新闻中心

EEPW首页>电源与新能源>设计应用> D类音频放大器概念及其设计原理和方法

D类音频放大器概念及其设计原理和方法

作者: 时间:2011-11-21 来源:网络 收藏
,D类的效率从高功率条件下的90%减少到78%。但即使是78%也要远优于B类和A类,它们的效率分别为28%和3%。

  这些差别对于系统设计具有重要的影响。对于1 W以上的功率水平,线性输出级的过大的功耗要求采用有效的散热方法以避免不可接受的发热,通常是使用大金属板作为散热板,或用风扇促进放大器空气散热。如果放大器是集成电路IC),就可能需要大尺寸、高成本的增强散热封装以促进热传导。这些考虑在消费类产品中很麻烦,例如平板电视,其印制电路板面积(PCB)面积很宝贵,或汽车音响,其发展趋势是在固定空间内增加通道数。

  对于1 W以下的功率水平,处理浪费的功率可能比处理散热还困难。如果是电池供电,线性放大器输出级消耗电池电荷要比D类放大器快。在上面的例子中,D类放大器输出级耗费的电源电流是B类放大器的1/2.8,是A类放大器的1/23.6,因此它们用于蜂窝电话,PDA和MP3播放器等产品在电池的寿命方面有很大差别。

  迄今为止,我们为了简单起见,只是专门注重放大器输出级的分析。但是当考虑放大器系统中所有功耗时,线性放大器要比低输出功率D类放大器更有利。原因是在低功率水平条件下,产生和开关波形所需要的功率会很大。因而,精心设计的低中功率的AB类放大器的宽系统静态功耗优势使得它们可与D类放大器相竞争。虽然对于宽的输出功率范围,毫无疑问D类放大器具有低功耗优势。

  D类放大器术语以及差分方式与单端方式的比较

  图3示出D类放大器中输出晶体管和LC滤波器的差分实现。这个H桥具有两个半桥开关电路,它们为滤波器提供相反极性的脉冲,其中滤波器包含两个电感器、两个电容器和扬声器。每个半桥包含两个输出晶体管,一个是连接到正电源的高端晶体管MH,另一个是连接到负电源的低端晶体管ML。图3中示出的是高端pMOS晶体管。经常采用高端nMOS晶体管以减小尺寸和电容,但需要特殊的栅极驱动方法控制它们(见深入阅读资料1)。

  全H桥电路通常由单电源(VDD)供电,接地端用于接负电源端(VSS)。对于给定的VDD和VSS,H桥电路的差分方式提供的输出信号是单端方式的两倍,并且输出功率是其四倍。半桥电路可由双极性电源或单极性电源供电,但单电源供电会对DC偏置电压产生潜在的危害,因为只有VDD/2电压施加到过扬声器,除非加一个隔直电容器。

  “激励”的半桥电路电源电压总线可以超过LC滤波器的大电感器电流产生的标称值。在VDD和VSS之间加大的去耦电容器可以限制激励dV/dt的瞬态变化。全桥电路不受总线激励的影响,因为电感器电流从一个半桥流入,从另一个半桥流出,从而使本地电流环路对电源干扰极小。

  音频D类放大器设计因素

  虽然利用D类放大器的低功耗优点有力推动其音频应用,但是有一些重要问题需要设计工程师考虑,包括:

  ●输出晶体管尺寸选择

  ●输出级保护

  ●音质

  ●方法

  ●抗电磁干扰( EMI)

  ● LC滤波器设计

  ●系统成本

  输出晶体管尺寸选择

  选择输出晶体管尺寸是为了在宽范围信号调理范围内降低功耗。当传导大的IDS时保证VDS很小,要求输出晶体管的导通电阻(RON)很小(典型值为0.1Ω~0.2Ω)。但这要求大晶体管具有很大的栅极电容(CG)。开关电容栅极驱动电路的功耗为CV2f,其中C是电容,V是充电期间的电压变化,f是开关频率。如果电容或频率太高,这个“开关损耗”就会过大,所以存在实际的上限。因此,晶体管尺寸的选择是传导期间将IDS×VDS损失降至最小与将开关损耗降至最小之间的一个折衷。在高输出功率情况下,功耗和效率主要由传导损耗决定,而在低输出功率情况下,功耗主要由开关损耗决定。功率晶体管制造商试图将其器件的RON×CG减至最小以减少开关应用中的总功耗,从而提供开关频率选择上的灵活性。

  输出级保护

  输出级必须加以保护以免受许多潜在危险条件的危害:

  过热: 尽管D类放大器输出级功耗低于线性放大器,但如果放大器长时间提供非常高的功率,仍会达到危害输出晶体管的水平。为了防止过热危险,需要温度监视控制电路。在简单的保护方案中,当通过一个片内传感器测量的温度超过热关断安全阈值时,输出级关断,并且一直保持到冷却下来。除了简单的有关温度是否已经超过关断阈值的二进制指示以外,传感器还可提供其它的温度信息。通过测量温度,控制电路可逐渐减小音量水平,减少功耗并且很好地将温度保持在限定值范围内,而不是在热关断期间强制不发出声音。

  输出晶体管过流: 如果输出级和扬声器端正确连接,输出晶体管呈低导通电阻状态不会出现问题,但如果这些结点不注意与另一个结点或正、负电源短路,会产生巨大的电流。如果不经核查,这个电流会破坏晶体管或外围电路。因此,需要电流检测输出晶体管保护电路。在简单保护方案中,如果输出电流超过安全阈值,输出级关断。在比较复杂的方案中。

  电流传感器输出反馈到放大器中,试图限制输出电流到一个最大安全水平,同时允许放大器连续工作而无须关断。在这个方案中,如果限流保护无效,最后的手段是强制关断。有效的限流器还可在由于扬声器共振出现暂时的大瞬态电流时保持放大器安全工作。

  欠压: 大多数开关输出级电路只有当正电源电压足够高时才能正常工作。如果电源电压太低,出现欠压情况,就会出现问题。这个问题通常通过欠压封锁电路来处理,只有当电源电压大于欠压封锁阈值时才允许输出级工作。

  输出晶体管导通时序: MH和ML输出级晶体管(见图6)具有非常低的导通电阻。因此,避免MH和ML同时导通的情况很重要,因为它会产生一个从VDD到VSS的低电阻路径通过晶体管,从而产生很大的冲击电流。最好的情况是晶体管发热并且消耗功率;最坏的情况是晶体管可能被毁坏。晶体管的先开后合控制通过在一个晶体管导通之前强制两个晶体管都断开以防止冲击电流情况发生。两个晶体管都断开的时间间隔称为非重叠时间或死区时间。

D类音频放大器概念及其设计原理和方法

  图6. 输出级晶体管的先合后开开关

  音质

  在D类放大器中,要获得好的总体音质必须解决几个问题。

  “咔嗒”声:当放大器导通或断开时发出的咔嗒声非常讨厌。但不幸的是,它们易于引入到D类放大器中,除非当放大器静噪或非静噪时特别注意器状态、输出级时序和LC滤波器状态。

  信噪比(SNR):为了避免放大器本底噪声产生的嘶嘶声,对于便携式应用的低功率放大器,SNR通常应当超过90 dB,对于中等功率设计SNR应当超过100 dB,对于大功率设计应当超过110 dB。这对于各种放大器是可以达到的,但在放大器设计期间必须跟踪具体的噪声源以保证达到满意的总体SNR。

  失真机理: 失真机理包括调制技术或调制器实现中的非线性,以及为了解决冲击电流问题输出级所采用的死区时间。

  在D类调制器输出脉宽中通常对包含音频信号幅度的信息进行编码。用于防止输出级冲击电流附加的死区时间会引入非线性时序误差,它在扬声器产生的失真与相对于理想脉冲宽度的时序误差成正比。用于避免冲击最短的死区时间对于将失真减至最小经常是最有利的;欲了解优化开关输出级失真性能的详细设计方法请参看深入阅读资料2。

  其它失真源包括:输出脉冲



评论


相关推荐

技术专区

关闭