新闻中心

EEPW首页>电源与新能源>设计应用> D类音频放大器概念及其设计原理和方法

D类音频放大器概念及其设计原理和方法

作者: 时间:2011-11-21 来源:网络 收藏
color=#000000>  如果栅极驱动非重叠时间非常长,扬声器或LC滤波器的感应电流会正向偏置输出级晶体管端的寄生二极管。当非重叠时间结束时,二极管偏置从正向变为反向。在二极管完全断开之前,会出现大的反向恢复电流尖峰,从而产生麻烦的EMI源。通过保持非重叠时间非常短(还建议将音频失真减至最小)使EMI减至最小。如果反向恢复方案仍不可接受,可使用肖特基(Schottky)二极管与该晶体管的寄生二极管并联,从而转移电流并且防止寄生二极管一直导通。这很有帮助,因为Schottky二极管的金属半导体结本质上不受反向恢复效应的影响。

  具有环形电感器磁芯的LC滤波器可将电流导致的杂散现场输电线影响减至最小。在成本和EMI性能之间的一种好的折衷方法是通过屏蔽减小来自低成本鼓形磁芯的辐射,如果注意可保证这种屏蔽可接受地降低电感器线性和扬声器音质。

  LC滤波器设计

  为了节省成本和PCB面积,大多数D类的LC滤波器采用二阶低通设计。图3示出一个差分式二阶LC滤波器。扬声器用于减弱电路的固有谐振。尽管扬声器阻抗有时近似于简单的电阻,但实际阻抗比较复杂并且可能包括显著的无功分量。要获得最佳滤波器设计效果,设计工程师应当总是争取使用精确的扬声器模型。

  常见的滤波器设计选择目的是为了在所需要的最高音频频率条件下将滤波器响应下降减至最小以获得最低带宽。如果对于高达20 kHz频率,要求下降小于1 dB,则要求典型的滤波器具有40 kHz巴特沃斯(Butterworth)响应(以达到最大平坦通带)。对于常见的扬声器阻抗以及标准的L值和C值,下表给出了标称元器件值及其相应的近似Butterworth响应:

D类音频放大器概念及其设计原理和方法

  如果设计不包括扬声器反馈,扬声器THD会对LC滤波器元器件的线性度敏感。

  电感器设计考虑因素:设计或选择电感器的重要因素包括磁芯的额定电流和形状,以及饶线电阻。

  额定电流:选用磁芯的额定电流应当大于期望的的最高电流。原因是如果电流超过额定电流阈值并且电流密度太高,许多电感器磁芯会发生磁性饱和,导致电感急剧减小,这是我们所不期望的。

  通过在磁芯周围饶线而形成电感器。如果饶线匝数很多,与总饶线长度相关的电阻很重要。由于该电阻串联于半桥和扬声器之间,因而会消耗一些输出功率。如果电阻太高,应当使用较粗的饶线或选用要求饶线匝数较少的其它金属材质的磁芯以提供需要的电感。

  最后,不要忘记所使用的电感器的形状也会影响EMI,正如上面所提到的。

  系统成本

  在使用D类放大器的音频系统中,有哪些重要因素影响其总体成本? 我们怎样才能将成本减至最低?

  D类放大器的有源器件是开关输出级和器。构成该电路的成本大致与模拟线性放大器相同。真正需要考虑的折衷是系统的其它元器件。

  D类放大器的低功耗节省了散热装置的成本(以及PCB面积),例如,散热片或风扇。D类集成电路放大器可采用比模拟线性放大器尺寸小和成本低的封装。当驱动数字音频源时,模拟线性放大器需要数模转换器(DAC)将音频信号转换为模拟信号。对于处理模拟输入的D类放大器也需如此转换,但对于数字输入的D类放大器有效地集成了DAC功能。

  另一方面,D类放大器的主要成本缺点是LC滤波器。LC滤波器的元器件,尤其是电感器,占用PCB面积并且增加成本。在大功率放大器中,D类放大器的总体系统成本仍具有竞争力,因为在散热装置节省的大量成本可以抵消LC滤波器的成本。但是在低成本、低功耗应用中,电感器的成本很高。在极个别情况下,例如,用于蜂窝电话的低成本放大器,放大器IC的成本可能比LC滤波器的总成本还要低。即使是忽略成本方面的考虑,LC滤波器占用的PCB面积也是小型应用中的一个问题。

  为了满足这些考虑,有时会完全取消LC滤波器,以采用无滤波放大器设计。这样可节省成本和PCB面积,虽然失去了低通滤波器的好处。如果没有滤波器,EMI和高频功耗的增加将会不可接受,除非扬声器采用电感式并且非常靠近放大器,电流环路面积最小,而且功率水平保持很低。尽管这种设计在便携式应用中经常采用,例如,蜂窝电话,但不适合大功率系统,例如,家庭音响。

  另一种方法是将每个音频通道所需要的LC滤波器元器件数减至最少。这可以通过使用单端半桥输出级实现,它需要的电感器和电容器数量是差分全桥电路的一半。但如果半桥输出级需要双极性电源,那么与产生负电源相关的成本可能就会过高,除非负电源已经有一些其它目的,或放大器有足够多的音频通道,以分摊负电源成本。另外,半桥也可从单电源供电,但这样会降低输出功率并且经常需要使用一个大的隔直流电容器。

  ADI公司D类放大器

  刚才讨论的所有设计问题可以归结到一个要求相当严格的项目。为了节省设计工程师的时间,ADI公司提供各种D类放大器IC1,它们含有可编程增益放大器、器和功率输出级。为了简化评估,ADI公司为每种类型的放大器提供了演示板。这些演示板的PCB布线和材料清单可以作为切实可行的参考设计,从而帮助客户迅速设计经过验证、经济有效的音频系统而无须为解决D类放大器主要设计问题做“重复性的工作”。

  例如,可以考虑使用AD1990,AD1992,AD1994和AD1996双放大器IC系列产品,它们适合要求两个通道每通道输出达到5,10,25和40 W的中等功率的立体声或单声道应用。下面是这些IC的一些特性:

  AD1994 D类音频功率放大器包含两个可编程增益放大器、两个Σ-Δ器和两个功率输出级以在家庭影院、汽车和PC音频应用中驱动全H桥连接的负载。它产生的开关波形可驱动两个25 W立体声扬声器,或一个50 W单声道扬声器,具有90%的效率。其单端输入施加到一个增益可设置为0,6,12和18 dB的可编程增益放大器(PGA),以处理低电平信号。

  AD1994具有集成保护以防止输出级受到过热、过流和冲击电流的危害。由于其特殊的时序控制、软启动和DC失调校准,与静音相关的咔嗒声很微小。其主要性能指标包括0.001% THD,105 dB动态范围,大于60 dB的PSR,以及采用开关输出级连续时间反馈和优化的输出级栅极驱动器。其1 bit Σ-Δ调制器尤其为D类应用增强以达到500 kHz平均数据频率,对于90%调制具有高环路增益,以及全调制稳定性。独立调制器方式允许驱动外部的大输出功率场效应管(FET)。

  AD1994对于PGA、调制器和数字逻辑采用5 V电源,对于开关输出级采用8 V~20 V高电压电源。相关的参考设计满足FCC B类EMI标准要求。当以5 V和12 V电源驱动6Ω负载时,其静态功耗为487 mW,在2×1 W输出功率条件下功耗为710 mW,在待机方式下功耗为0.27 mW。AD1994采用64引脚LFCSP封装,工作温度范围为–40℃~+85℃。


上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭