新闻中心

EEPW首页>嵌入式系统>设计应用> 用于CMOS图像传感器的流水线ADC设计及其成像验证

用于CMOS图像传感器的流水线ADC设计及其成像验证

作者: 时间:2012-08-15 来源:网络 收藏

a.JPG

3 芯片版图
该芯片使用0.5μm标准工艺进行流片,版图的设计综合考虑了混合信号电路布局、匹配设计和抗干扰设计等。布局采用数模分离,数字电路加保护环;匹配设计采用了共心对称设计、比例单元设计和添加哑元元件等技术。芯片版图如图7所示,带PAD的整体芯片面积为3.55 mm@2.9 mm,其中上部分为数字位对齐和数字校准电路,中部为各级流水线,右侧为时钟产生电路,下部为信号输入和其他电路。

4 成像系统及其成像结果
4.1 成像系统硬件组成
低噪声、高帧频的成像,除了对PCB测试板的设计要求较高外,也对测试系统的构成也提出了较高的要求。本成像系统的电学硬件系统框图如图8所示。该电学硬件系统的基本工作原理是:

b.JPG


1)在PCB板上用基于CPLD设计的时钟波形来控制板上的芯片和ADC芯片协同工作,并在此过程中生成帧同步信号和ADC时钟信号交予数字采集卡作为采集卡的外触发和外时钟信号。
2)在ADC芯片将CMOS产生的模拟信号进行模数转换后,其数字信号经缓冲芯片缓冲输出至数字采集卡。
3)数字采集卡在帧同步信号控制下进行重复触发采样,在采集卡收集到一定数据后将采集到的数据传送到主机中,然后用成像软件进行分析,给出动态的成像图片。
4.2 成像系统软件设计
本测试系统软件采用编程,是一种图形化的编程语言的开发环境,广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。
本系统中利用的虚拟仪器(virtual instrument)实现对数据采集卡的数据采样控制、对采集到的数据进行信号处理以及动态成像,图9为成像软件的界面图,其工作模式和原理是:

c.JPG


1)在控制数字采集卡的程序中,将始终和触发设置为外时钟采样以及外触发重复触发采样模式,以实现成像信号帧同步和保证采集卡采样与ADC输出的同步。
2)在将采集到的数据转化为U16数字格式数组后,对这些信号进行灰度值处理,程序设计了两种灰度调节模式:固定的灰度转换和灰度自动调节,此外程序还设计了可选的反色、图像翻转、图像放大等功能。
3)在数据进行信号处理后,完成对采集数据的二维灰度值成像,这些信号处理和成像程序都置于while循环中,因此可根据延时设置成像刷新的帧频,实现动态成像。
4.3 成像结果
用本文设计的ADC对模拟输出的CMOS图像传感器进行模数转换后,基于自主设计的成像系统,进行了实时成像实验,成像结果如图10所示,可以看出,画面清晰,层次感分明。

d.JPG

5 结束语
文中设计了一种可应用于低噪声CMOS图像传感器芯片级模数转换的12bit、10Msps,并基于0.5μm标准CMOS工艺进行了流片。最后在PCB板级电路上用该流水线型ADC完成了CMOS图像传感器的模数转换,并基于Labview和数字采集卡系统实现了CMOS图像传感器的成
像,成像结果表明,该ADC可满足低噪声CMOS图像传感器芯片级模数转换器的要求,下一步可将CMOS图像传感器和该ADC合并设计在一个芯片上进行流片。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭