新闻中心

EEPW首页>测试测量>设计应用> 基于扭振信号的齿轮故障诊断研究

基于扭振信号的齿轮故障诊断研究

作者: 时间:2013-08-09 来源:网络 收藏
在机械诊断技术的研究与应用中,面对一个诊断对象首先应该考虑的问题是如何获得故障信息。实际诊断工作中,通常无法对所关心的部位直接进行观察和测量,而只能在条件允许的其它部位上拾取某些与故障相关的间接信号。这些信号往往是故障激励和其它激励的混合响应,其中除了与故障相关的成分外其余均被视为噪声。由于受到传递过程和噪声的影响,一般情况下对信号进行直接观察很难得到全面的故障特征,而且,通常的信号或特征并不是描述故障的直接物理量,它们与故障之间还存在着复杂的映射关系,需要借助一定的分析过程和识别方法才能得到故障的类型和程度。信息在传递与变换过程中只会减少不会增加,所以原始信号所包含的故障信息量的多少对诊断具有决定性的作用,即信号质量是整个诊断工作的基础。

诊断是机械诊断中一个具有代表性的问题。目前齿轮诊断中广泛使用的是箱体振动信号。这个信号中包含了每个齿轮的啮合振动以及机器系统中其它振源的响应。当载荷稳定不变时,齿轮的啮合振动信号基频及其高次谐波、调幅与调频包络等特征中包含了齿轮的故障信息,是诊断的依据。但是,由于箱体振动信号中包含了各个齿轮啮合振动以及整个机器系统中其它振动的响应,因此,如何将待诊断齿轮的啮合振动信号从很强的噪声中分离出来,是齿轮诊断的关键所在。对信号直接进行频域、时频域分析或多分辨分析,往往得不到好的效果[1~4]。

时域平均法是从复杂信号中提取周期分量的有力工具,P.D.McFadden[1,2]和J.D.Smith[1]首先将这种方法用到了齿轮诊断中。至今,许多基于新的信号处理方法的分析技术仍然依靠时域平均法来分离待诊断齿轮的啮合振动信号[4~6]。时域平均法具有良好的噪声抑制能力,但是,由于受到同步处理过程以及信号传递过程的影响,在抑制噪声的同时,部分有用信号尤其是信号中的高频分量也在一定程度上受到抑制。这对齿轮早期故障的诊断非常不利。

实际上,从齿轮传动系统的回转信号波动中可以得到扭振形式的啮合振动信号。当载荷稳定时,从故障激励到之间的变换与传递过程,比同样激励到箱体往复振动之间的过程要简单得多,而且,不像往复振动信号那样容易受到其它振源产生的机械波的干扰,所以比往复振动信号对故障更加敏感、信噪比更高,利用扭振信号更容易发现齿轮的早期故障。

这里我们将“振动”一词理解为,一个物理量通过其恒定值而在其最大最小值之间往复变化。并将物体的直线振动称为往复振动,回转运动振动称为扭振。

1 齿轮的啮合扭振

当载荷恒定时,理想渐开线齿轮啮合过程中2个齿轮的回转成精确比例关系,不产生啮合振动。啮合振动是由于实际齿轮与理想齿轮之间的偏差引起的。从故障诊断的角度来看,除了制造与装配过程的误差外,引起啮合振动的主要原因是疲劳裂纹、齿面损伤和均匀磨损等。当齿轮啮合传递恒扭矩时,可以用“静态传递误差”来描述实际齿轮与理想齿轮传动过程的差异,静态传递误差定义为,以与之相啮合的另一齿轮的角位移的函数形式来度量,该角位移θ的线性化偏差Δθ[7]即为静态传递误差。

考虑图1a所示的圆柱斜齿轮的啮合过程,以齿轮1的角位移θ表示两齿轮的位置,并用j表示每个啮合齿对的编号,那么对于齿对j来说θ对应了齿面上唯一的一条接触线,并且在整个啮合过程中啮合线始终与齿轮的轴线平行。再用y来表示齿面上一点与齿轮端面的垂直距离,齿对j的一个接触点P的坐标为(θ,y)j。如图1b所示,用η(1)j(θ,y)和η(2)j(θ,y)表示接触线上P点与理想齿面的偏差,上标分别表示齿对j的两个齿;uj(θ,y)表示该点在载荷作用下的变形量,这个变形包括齿的弯曲变形和齿面的局部接触变形;ζ(θ)表示静态传递误差;η(.)j(θ,y)、uj(θ,y)和ζ(θ)均沿齿面法线方向测量,且以两齿面更加靠近为符号正。


图1 圆柱斜齿轮啮合过程

由图1中几何关系可得

uj(θ,y)=ζ(θ)-η(1)j(θ,y)-η(2)j(θ,y)         (1)

令P点的单位接触线长度的刚度为KTj(θ,y),取接触线上微元dl=secφbdy,其中φb是齿的倾斜角,对于直齿轮φb=0。齿对j传递的合力

Fj(θ)=secφb∫yByAKTj(θ,y)uj(θ,y)dy=secφb∫yByAKTj(θ,y)[ζ(θ)-η(1)j(θ,y)-η(2)j(θ,y)]dy                                  (2)

式中,yA和yB是接触线端点的y轴坐标。

令齿对j在位置θ的接触线的刚度为

ij(θ)=∫yByAKTj(θ,y)dy           (3)

刚度加权的接触线偏差为

(4)

式(2)可以写成

(5)

齿轮啮合传递的圆周力

(6)

式中,是对啮合区内的所有齿对求和。

沿基圆切线方向的静态传递误差

(7)

设齿轮1的基圆半径为r,同时令

(8)

(9)

式中,Kθ(θ)、Mθ(θ)分别称为等效扭转刚度和附加扭矩。齿轮传递的恒定扭矩M=r Ft,则角位移形式表示的静态传递误差为

(10)

从以上的分析可以看到,啮合过程中故障引起的刚度变化和齿面接触区域的变化都将引起静态传递误差Δθ(θ)的改变,而Δθ(θ)是齿轮传动过程中的扭振激励。

图2a表示一对啮合的齿轮,J1、J2和φ1、φ2分别为两齿轮的转动惯量和相对于各自平衡转动的扭振角位移,Z1、Z2为两齿轮的齿数。假设传动比i=Z1/Z2,那么,可以将这个系统以齿轮J1的平衡转动为参数等效为图2b所示的二自由度扭振系统,其中Je=i2 J2,为齿轮J2的等效转动惯量,φe=iφ2是它的等效扭振角位移。于是啮合作用可以等效为一段扭转刚度为Kθ(θ)的轴和一个附加载荷Mθ(θ)。同样,一个多级齿轮变速系统可以等效为一个多激励、多自由度的振动系统,系统振动的激励就是各个齿轮副的等效刚度和附加载荷。载荷稳定时系统只受到轴承的约束,其扭振只取决于静态传递误差的激励,或者说取决于啮合刚度变化和齿面误差。因此,齿轮轴系扭振比箱体的振动过程要简单,信号与故障之间的对应关系更直接。

上一页 1 2 下一页

评论


技术专区

关闭