这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界» 论坛首页» 综合技术» 基础知识» SiC功率技术现状和大规模商业化的障碍

共1条 1/1 1 跳转至

SiC功率技术现状和大规模商业化的障碍

专家
2023-04-14 08:29:24 打赏

  硅 (Si) 功率器件由于其批量生产成本低、起始材料质量好、易于制造和经过验证的可靠性而在电力电子领域占据主导地位。尽管 Si 功率器件不断改进,但它们正在接近其运行极限,这主要是由于其相对较低的带隙、临界电场和热导率导致高传导和开关损耗以及较差的高温性能。碳化硅 (SiC) 的大带隙和临界电场允许使用更薄层的高压器件,从而降低电阻和相关的传导和开关损耗。结合 SiC 的大导热性,可以通过简化的热管理在高功率水平下进行高温操作。此外,更薄的器件层和低导通电阻允许更小的形状因数,从而减少电容。这使得能够在远高于硅频率的频率下高效运行,从而最大限度地减小无源系统组件的尺寸。因此,基于 SiC 的系统效率更高、重量更轻、体积更小并且具有成本竞争力(尽管器件成本高于 Si),因为体积庞大的磁性元件和散热器被最小化了。

  这些引人注目的效率和系统优势导致在过去二十年中进行了大量的开发工作,SiC 平面和沟槽 MOSFET 以及 JFET 可作为分立元件和高功率模块从多家供应商处购买,电压范围为 650 至 1,700 V . 目前,电力电子工程师可以选择 Si、SiC 和氮化镓 (GaN) 组件用于他们的系统。当然,在为应用和电压选择合适的材料器件时需要进行大量权衡:电流、频率、效率、温度和成本是重要的考虑因素。

  Si、SiC 和 GaN 特别具有竞争力的电压范围. Si 可靠、坚固、便宜,并且能够在“较低”频率下进行大电流高效运行。它在 15 至 650 V 范围内特别具有竞争力。GaN 以合理的成本提供高效的高频操作,因为它是在利用硅制造规模经济的 CMOS 兼容晶圆厂和代工厂中制造的。GaN 器件是横向的——与具有垂直配置的 SiC 功率器件不同——这简化了封装和 IC 制造。但是,横向配置实际上将操作限制在 ~650 V(一家 GaN 供应商提供 900 V 器件),而 SiC 是高于该额定电压的最佳解决方案。SiC 效率高,可在高电流和高频率下运行。虽然不完全兼容 CMOS,它是在硅晶圆厂中制造的,只需对额外的 SiC 专用设备进行适度的资本投资。多个已建立的 Si 工艺已成功转移到 SiC,并且特定的 SiC 工艺在全球众多晶圆厂中处于成熟阶段。总体而言,SiC 具有成本竞争力,因为它是在成熟节点完全折旧的大批量 Si 晶圆厂中加工的,提供了剩余晶圆产能,可最大限度地提高晶圆厂利用率和利润。

  SiC 器件正在取代现有 Si 器件的高影响力应用机会已经出现,包括 xEV 和铁路电力电子设备,具有更低的损耗和更低的冷却要求;具有降低冷却负荷和更高效率的新型数据中心拓扑结构;用于高效大功率电动机的变频驱动器,可降低整体系统成本;更高效、灵活和可靠的网格应用程序,减少系统占用空间;以及“更多电动航空航天”,重量、体积和冷却系统的减少有助于节能。就电动汽车而言,目前大多数使用 400V 总线架构,因此 650V SiC 器件与成熟且坚固的硅 IGBT 竞争,而 GaN 则在利润丰厚的牵引逆变器、DC/DC 转换器和车载充电器中竞争市场。因此,650-V 范围是一个“战场”,其中每种材料器件都带来独特且引人注目的竞争优势。应该注意的是,为了提高效率——相同电池的续航里程更长或较小电池的续航里程相同——以及快速充电,电动汽车正在迅速过渡到 800V 总线架构。在此电压下,1,200-V SiC MOSFET 具有整体优势,因为它们于 2011 年实现商业化并经过几代优化。现在正在发生的电动汽车中的 SiC 插入是一个批量应用机会,可以进一步刺激 SiC 制造的规模经济和降低系统成本。应该注意的是,为了提高效率——相同电池的续航里程更长或较小电池的续航里程相同——以及快速充电,电动汽车正在迅速过渡到 800V 总线架构。在此电压下,1,200-V SiC MOSFET 具有整体优势,因为它们于 2011 年实现商业化并经过几代优化。现在正在发生的电动汽车中的 SiC 插入是一个批量应用机会,可以进一步刺激 SiC 制造的规模经济和降低系统成本。应该注意的是,为了提高效率——相同电池的续航里程更长或较小电池的续航里程相同——以及快速充电,电动汽车正在迅速过渡到 800V 总线架构。在此电压下,1,200-V SiC MOSFET 具有整体优势,因为它们于 2011 年实现商业化并经过几代优化。现在正在发生的电动汽车中的 SiC 插入是一个批量应用机会,可以进一步刺激 SiC 制造的规模经济和降低系统成本。

  随着 SiC 的持续增长,该行业正在消除大规模商业化的最后障碍,包括高于 Si 的器件成本、基面位错 (BPD) 的存在、可靠性和坚固性问题以及对熟练掌握 SiC 的劳动力的需求电源技术跟上不断增长的需求。目前,SiC 晶圆占 SiC 器件总成本的 55% 至 70%,这是其独特的复杂制造细节的结果。传统的 SiC 衬底主要通过种子升华技术在约 2,500˚C 的温度下生长,这给过程控制带来了挑战。晶体膨胀有限,需要使用大的优质晶种,升华生长速率可能相对较低,约为 0.5 至 2 mm/h。位错通过晶锭传播并存在于器件晶圆中。此外,与金刚石相当的 SiC 材料硬度使得 SiC 衬底的锯切和抛光相对于 Si 来说速度慢且成本高。然而,在许多应用中,与 Si 相比,插入 SiC 可降低整体系统成本,尽管 SiC 器件的成本可能比其对应的 Si 器件高 2 至 3 倍。这是由于高效高频 SiC 操作实现了无源元件小型化和冷却系统简化。

  大多数“致命”缺陷在现代 SiC 晶圆中几乎已被消除。BPD 是主要的残留缺陷,会降低器件性能并影响良率。BPD 可以从晶圆衬底传播到制造器件的外延层厚度。BPD 也可以在高温离子注入制造过程中产生。在商用晶圆中,超过 95% 的衬底 BPD 在通过 CVD 离轴生长的外延层中传播为相对“良性”的螺纹边缘位错。阈值电压不稳定性是 SiC MOSFET 中主要的可靠性问题,它主导着基于 SiC 的电力电子应用。这主要是由于 SiC/栅极氧化物界面处的氧化物陷阱。SiC MOSFET 阈值电压的正向偏移具有增加传导损耗的有害影响,而负向偏移则不可取,因为它可以自发地开启晶体管。通过利用设计权衡,可以使 SiC 器件更加坚固耐用。这与智能栅极驱动相结合,可以提供足够的短路保护。

  为了培训宽带隙 (WBG) 劳动力并加速清洁能源制造、创造就业机会和节能,美国能源部创建了 PowerAmerica 联盟。今天,PowerAmerica 由会员支持/驱动,致力于解决 WBG 功率半导体技术方面的差距,以促进其发展。

  在过去六年中,PowerAmerica 在 200 多个功率 SiC/GaN 大学/行业合作项目中投资了 1.47 亿美元,涉及所有主要应用,包括汽车和铁路牵引、车载充电器、航空航天、光伏、灵活的交流输电系统、高压直流系统、微电网、储能、电机驱动、UPS 和数据中心。其教育活动已在应用 WBG 项目中培训了 410 名大学生,并吸引了超过 3,700 名参与者参加教程、短期课程和网络研讨会。这有助于培养一支经验丰富的员工队伍,他们能够熟练地充分发挥 WBG 系统的插入潜力。




共1条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册]