新闻中心

EEPW首页>嵌入式系统>业界动态> 全面解读集成电路产业链及相关技术

全面解读集成电路产业链及相关技术

作者: 时间:2017-07-04 来源:国元证券 收藏
编者按:如今集成电路已被广泛应用于所有电子设备,并推动了电子时代的到来,传媒、教育、娱乐、医疗、军工、通讯等各领域的发展均离不开性能卓越的集成电路设备,本文将会对集成电路的一些基础的流程和技术进行相关科普。

  (2)模拟IC和逻辑IC

本文引用地址://m.amcfsurvey.com/article/201707/361307.htm

  模拟IC是处理连续性的光、声音、速度、温度等自然模拟信号,模拟IC按技术类型来分有只处理模拟信号的线性IC和同时处理模拟与数字信号的混合IC。模拟IC按应用来分可分为标准型模拟IC和特殊应用型模拟IC。标准型模拟IC包括放大器、信号界面、数据转换、比较器等产品。特殊应用型模拟IC主要应用在4个领域,分别是通信、汽车、电脑周边和消费类电子。


全面解读集成电路产业链及相关技术

  2014年前十大模拟IC厂商销售额(单位:百万美元)

  逻辑IC可分为标准逻辑IC及特殊应用IC(ASIC),标准逻辑IC提供基本逻辑运算,并大量制造,而ASIC是为单一客户及特殊应用而量身定做的IC,具有定制化、差异化及少量多样的特性,主要应用于产业变动快、产品差异化高及整合度需求大的市场。

  (3)微元件IC

  微元件IC包括微处理器(MPU)、微控制器(MCU)、数字信号处理器(DSP)及微周边设备(MPR)。MPU是微元件IC中的最重要的产品,主要用于个人电脑、工作站和服务器,CPU是其中的一种,目前以Intel公司为MPU产业龙头。MCU又称为单片微型计算机或者单片机,是把中央处理器的频率与规格适当缩减,并将内存、计数器、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制。诸如手机、PC外围、遥控器,至汽车电子、工业上的步进马达、机器手臂的控制等,都可见到MCU的身影。

  DSP芯片即指能够实现数字信号处理技术的芯片, 近年来,数字信号处理器(DSP)芯片已经广泛用于自动控制、图像处理、通信技术、网络设备、仪器仪表和家电等领域;DSP为数字信号处理提供了高效而可靠的硬件基础。MPR则是支持MPU及MCU的周边逻辑电路元件。

  (二)制造部分

制造过程可分为晶圆制造和晶圆加工两部分。前者指运用二氧化硅原料逐步制得单晶硅晶圆的过程;后者则指在制备的晶圆材料上构建完整的芯片。

  (1)晶圆制造

  由于芯片极高的电路集成度,其电路对于半导体基质(晶圆)的材料纯度要求亦十分严苛。由各种元素混杂的硅石到硅纯度达 99.9999999%(称为 9N)的硅单晶晶圆,晶圆的制造流程,因此可以被认为是硅材料不断提纯的过程:

  1)“冶金级硅”制备:从二氧化硅到“金属硅”

  由硅石等富含二氧化硅(SiO2)的矿物资源通过提纯得到高纯度二氧化硅。充足的高纯度二氧化硅原料与富含碳原子(C)的煤炭、木炭等反应物被臵于电炉中,在1900℃的高温下,二氧化硅与碳发生氧化还原反应:SiO2+2C→Si+2CO,初步制得硅(Si)材料。


全面解读集成电路产业链及相关技术

  从二氧化硅到“金属硅

  由于此过程类似通过氧化还原反应冶炼铁、铜等金属的冶金过程,故此过程制备的硅材料被称为“冶金级硅”,又称“金属硅”。“高纯”金属硅材料的硅含量可达 98%,但这仍不能达到制成芯片的纯度要求。

  2)西门子制程:从金属硅到多晶硅

  冶金级硅的产量占全球硅元素产品产量的20%,该产品被大量运用于铝硅合金铸造业与化工产业。其中,仅有 5~10%的冶金级硅被用于再次提纯,进而制成高纯度“电子级硅”(电子级硅产量不到全球硅产品产量的 1~2%)。

  为进一步提纯硅材料,产业多先转化冶金级硅材料为含硅元素的挥发性液体,如三氯硅烷(HSiCl3)、四氯化硅(SiCl4),或直接转化为气体硅烷(SiH4)。之后,在密闭反应室中臵入表面温度达 1150℃的高纯硅芯,通入三氯硅烷气体。通过化学分解作用,高纯度硅材料得以直接“生长”于硅芯表面,由此提高硅材料纯度。


全面解读集成电路产业链及相关技术

  从“ 金属硅” 到多晶硅

  该制程被称为化学气相沉积法(CVD),用以制备高纯多晶硅。该技术于1954 年德国西门子公司申请专利,故又称“西门子制程”。此后的改良西门子法大大降低了制造能耗,并可使制备的多晶硅材料纯度达到 99.9999%(6N)。

  其他制程,如流化床反应器技术(FBR)、升级冶金硅技术(UMG-Si)等,亦被应用于高纯多晶硅生产,但改良西门子法仍占据产量的多数(达总产量的88%)。

  3)柴可拉斯基制程(“拉晶工艺”):从多晶硅到单晶硅

  6N 纯度的多晶硅材料仍不能应用于微电子领域。并且电学性质方面,多晶硅的导电性以无法达到芯片级技术要求。为有效控制半导体材料的量子力学特性,硅材料的纯度仍需进一步提高。通过反复提纯的过程,最终用于集成电路生产的硅材料纯度需达到99.9999999%( 9N)水平。

  由高纯多晶硅提纯高纯单晶硅,主流的制备工艺为“柴可拉斯基制程”:柴可拉斯基制程指制备半导体(如硅、锗、砷化镓)、金属、盐类、合成宝石等的单晶的晶体生长过程。


全面解读集成电路产业链及相关技术

  从多晶硅到电子级硅

  上一步骤制备的高纯多晶硅,在1425℃的高温下熔融于坩埚容器中。可加入掺杂剂原子如硼(B)、磷(P)原子对半导体进行掺杂,以制成具有不同电子特性的 p 型或 n型半导体。将转动的高纯单晶硅晶棒没入熔融的多晶硅中,缓慢地转动并同时向上拉出晶棒。同时,盛放熔融物的坩埚以晶棒转动的反向转动。通过精确控制温度变化、拉晶速率、旋转速度,得以从熔融物中提取出标准化的大型圆柱体单晶晶柱,晶柱可高达两米,重约数百千克。

  硅晶柱直径决定了切割出晶圆的直径,更大的晶圆意味着单块晶圆上得以印刻更多的集成电路晶片,生产效率可以得到极大提升。现阶段,晶圆制造厂主要生产直径为200mm和300mm的晶圆。到2018年,450mm直径的晶圆预计可以实现量产。另外,为保证单晶硅材料纯度,晶柱生长的过程通常于惰性气体(如氩气Ar)环境下在惰性反应容器(如石英坩埚)中进行。

  在国内,此工艺常被形象地称为制备高纯单晶硅的“拉晶工艺”,此法制备的高纯单晶硅硅锭纯度可达99.9999999%(9N),具有优良的半导体量子力学特性,可以被用于集成电路制造领域——该材料因此被称为“电子级硅”。另外,在工业生产中悬浮区熔法等技术也被用于多晶硅至单晶硅的提纯过程。其缺点是制备的晶柱直径往往小于拉晶法的制成直径。

  4)最后一步:从晶柱到晶圆

  制备了高纯单晶硅晶柱后,需经过:1晶柱裁切与检测、2外径研磨、3切片、4圆边、5研磨、6蚀刻、7去疵、8抛光、9清洗、10检验、11包装等等十一个步骤进行处理。


全面解读集成电路产业链及相关技术

  从晶柱到晶圆

  最终制成可供晶圆加工厂家使用的合格半导体晶圆。极度平滑的硅晶圆厚度一般在0.2-0.75mm之间,直接作为制造集成电路芯片的材料,由晶圆代工厂进行晶圆加工阶段的处理。



关键词:集成电路封装

评论


相关推荐

技术专区

关闭