新闻中心

EEPW首页>电源与新能源>设计应用> 讨论在PFC中应用的新型超级结MOSFET器件的特点

讨论在PFC中应用的新型超级结MOSFET器件的特点

作者: 时间:2013-02-25 来源:网络 收藏
  超级结(Super-Junction) 器件基于电荷平衡技术,在减少导通电阻和寄生电容两方面提供了出色的性能,这通常需要折中权衡。有了较小的寄生电容,超级结 具有极快的开关特性并因此减少了开关损耗。自然地,这种快速开关特性伴有极高的dv/dt和di/dt,会通过器件和印刷电路板中的寄生元件而影响开关性能。特别地,对于在现代高频SMPS中使用的超级结 ,很难抑制频率噪声和EMI辐射,同时实现高开关效率和低开关噪声。此外,开关噪声会导致某些意外的系统或器件失效,它们与栅氧化层击穿、dv/dt衰减和控制信号中的闩锁效应问题相关,因为在各种异常状况中,例如启动状态、过载状况和并联工作,会发生严重的栅极振荡和高开关dv/dt。为实现低开关噪声,需要使用高值寄生电容或栅电阻。根据最近的系统发展趋势,改进效率是一个关键目标;然而,只为降低开关噪声而使用慢速开关器件不是最佳解决方案。凭借SuperFET II MOSFET的优化设计,新一代超级结MOSFET SuperFET II器件实现了快速开关和低开关噪声,在应用中达到了高效率和低EMI。

SuperFET II MOSFET技术

  众所周知,超级结MOSFET的高开关速度自然有利于减少开关损耗,但它也带来了负面影响,例如增加了EMI、栅极振荡、高峰值漏源电压。在栅极驱动设计中,一个关键的控制参数就是外部串联栅电阻(Rg)。这会抑制峰值漏-源电压,并防止由功率MOSFET的引线电感和寄生电容引起的栅极振铃。该器件还在导通和关闭过程期间降低电压上升速率(dv/dt)和电流上升速率(di/dt)。但Rg也会影响MOSFET的开关损耗。因为器件必须在目标应用上达到最高效率,控制这些损耗是重要的。因此从应用的观点出发,选择正确的Rg值是非常重要的。SuperFET II MOSFET使用了集成栅电阻,它不是等效串联电阻(equivalent series resistor,ESR),只是栅电阻,置于栅极焊盘中,以便减少栅极振荡和控制大电流条件下的开关dv/dt与di/dt。集成栅电阻数值采用栅电荷来优化。器件的真实栅极中,VGS的栅极振荡 (Vb)显著减少了,因为栅-源端的电压降由内部Rg和外部Rg来分担。反向传输电容Cgd是影响开关期间的电压上升和下降时间的主要的参数之一。Cgd提供了来自漏电压的负反馈作用,它必须由通过Rg的栅极驱动电流来放电。振荡与几个原因有关,例如高的开关dv/dt和di/dt、寄生Cgd和漏极电流值。SuperFET II MOSFET的栅极电荷已优化,用于改进开关效率和开关噪声之间的折中权衡。图1显示了在关断瞬态期间,在相同驱动条件下,从100W至400W的电路中,比较快速SJ MOSFET和SuperFET II MOSFET之后,实际MOSFET的dv/dt。关断dv/dt呈线性上升,对于小的栅电阻(3.3Ω),快速超级结MOSFET显示了在电路中dv/dt不受控制。相比快速超级结MOSFET,SuperFET II MOSFET减少了关断dv/dt的增加,但在300W负载条件下仍然呈线性增加。在满负载条件下,dv/dt可控制在36V/ns,相比快速超级结MOSFET ,dv/dt减少了约30.8%。

fairchildtu1.jpg

  图1 在关断瞬态期间,电路中快速SJ MOSFET和SuperFET II MOSFET的dv/dt测量比较(VIN=100Vac, PO=400W, Rg=3.3Ω)

超级结MOSFET的寄生振荡机制

  超级结MOSFET的Coss曲线是高度非线性的。当超级结MOSFET作为开关器件用于PFC或DC/DC转换器时,这些影响将会产生极快的dv/dt和di/dt以及电压和电流振荡。图2显示了观察到的PFC电路中的振荡波形,它们出现在超级结MOSFET关断瞬态期间。从一般的观点来看,有几种振荡电路会影响MOSFET的开关性能,包括内部和外部振荡电路。图3显示了简化的PFC电路原理图,包括内部寄生参数,这是由功率MOSFET本身的寄生电容Cgs、Cgd_int.和Cds 与寄生电感Lg1、Ld1和Ls1,以及外部振荡电路,由外部耦合电容Cgd_ext.和线路板布局的寄生电感LG、LD和LS带来。寄生元件更多地涉及到开关特性,因为开关速度变得更快。当MOSFET导通和关断时,会在谐振电路中产生栅极寄生振荡,该谐振电路由内部和外部栅-漏电容Cgd_int.和Cgd_ext.以及栅电感Lg1和LG组成。当MOSFET开关速度变快时,尤其在它关断时,由于寄生电感LD,MOSFET漏-源中的振荡电压会经过栅-漏电容Cgd,并形成了包含栅电感Lg1和LG的谐振电路。由于栅电阻极小,振荡电路Q (fairchildshi0.jpg)变大,当谐振条件出现时,在那个地方和Cgd或LG、Lg1之间产生了大振荡电压,并引起了寄生振荡。此外,LS和Ls1两端的电压降可由公式(1)表示,它由关断瞬态期间的负漏极电流引起。杂散源极电感LS和Ls1两端的电压降在栅-源电压上产生了振荡。寄生振荡会引起严重的EMI问题、大的开关损耗、栅-源击穿、栅极失控,甚至导致MOSFET失效。

fairchildshi1.jpg(1)

fairchildtu2.jpg

  图2 使用超级结MOSFET ,PFC电路中的严重振荡波形

fairchildtu3.jpg

  图3 PFC电路的简化原理图与功率MOSFET的内部和外部寄生现象

SuperFET II MOSFET的应用益处

  实验结果证实,在PFC电路中SuperFET II MOSFET能够稳定运行并具有更好的EMI结果。测量在PFC升压电路中进行,在AC开/关测试期间,输入电压VIN=110VAC和输出功率水平Pout=300W相同。图4显示了启动时在栅极振荡VGS (黄线)中,快速超级结MOSFET和SuperFET II MOSFET之间的波形比较差异。对于快速超级结MOSFET,产生的高峰值栅极振荡超过45V。它会引起过电压闩锁(latch-up)效应,最后导致功率MOSFET的栅极信号缺失,如图4 (a)所示。使用如图4 (b)所示的SuperFET II MOSFET,峰值Vcc电压急剧下降到16V,并且消除了闩锁效应。如果输出功率水平增加或在相同的输出功率上输入电压降低,这种振荡效应会强制发生。在AC线路电压掉落后,该效应也会发生,当线路电压恢复时,升压级可为大电容充电至标称电压。在此期间,当MOSFET关断时,漏极电流是相当高的。漏极电流会转向MOSFET的输出电容Coss并为其充电至DC母线电压。电压斜率与负载电流成正比,且与输出电容值成反比。因为周围所有的寄生电容,高dv/dt值导致了电容性转移电流。连同所有的布局和寄生电感与电容,形成了LC振荡电路,仅由内部Rg来衰减。在某些条件下,例如在输入电压瞬态或短路情况下,会出现高di/dt和dv/dt,这会导致异常开关行为或最差的器件损坏情况。然而,采用优化的SuperFET II MOSFET,有助于改进效率并实现稳定工作。

fairchildtu4.jpg

  (a)快速超级结MOSFET (b) SuperFET II MOSFET

  图4 PFC电路中启动状态期间的波形比较

  (VIN=110VAC, POUT=300W, VO=380V, 600V/190mΩ SJ MOSFET)

  在400W ATX电源中验证了SuperFET II MOSFET的EMI性能。图5显示了用作PFC开关的快速超级结MOSFET和SuperFET II MOSFET的EMI噪声辐射测量结果。由于SuperFET II MOSFET的软开关特性,SuperFET II MOSFET可以减小峰值漏-源电压、峰值dv/dt和栅极振荡。通过使用SuperFET II MOSFET,在90MHz至160MHz的频率范围内,辐射水平(dBμV)变得更低。特别需要指出,相比快速超级结MOSFET, SuperFET II MOSFET在130MHz的辐射水平低于9~10dBμV,如图5(b)所示。

fairchildtu5a.jpg

  (a)快速超级结MOSFET

fairchildtu5b.jpg

  (b) SuperFET II MOSFET图5 在VIN=110Vac,Po=400W下,在ATX电源中测得的EMI辐射

结论

  随着功率MOSFET技术更加先进,超级结MOSFET带来了更

电荷放大器相关文章:电荷放大器原理
电容传感器相关文章:电容传感器原理
lc振荡电路相关文章:lc振荡电路原理

上一页 1 2 下一页

关键词:PFCMOSFET

评论


相关推荐

技术专区

关闭