新闻中心

EEPW首页>电源与新能源>设计应用> 新一代PCI背板电源管理需求

新一代PCI背板电源管理需求

作者: 时间:2008-08-26 来源:网络 收藏

高速汇流排提高电源设计难度

随着许多高速处理器、大容量硬碟和磁碟阵列、显示卡、乙太网路和光纤资料通信、以及存储器阵列等设备的通信速度不断加快,使用更快速的汇流排介面来符合其应用需求成为必要。

现代半导体技术能制造出比以前更快的逻辑电路,但仅靠提高逻辑电路速度并不足以加快汇流排速度。汇流排架构工程师必须处理汇流排电容、因为信号线长度不同所造成的信号歪斜现象、难以预测的汇流排负载变化、以及系统零组件的误差。汇流排速度越快,电压就必须越精确。而这些问题都与俗称为I/O电源或VIO.的汇流排收发器电源供应习习相关,因此现代汇流排必须小心设计其电源才能有效发挥最大效能。

新旧可相容

回溯相容性是汇流排的最大优势。特别工作小组已发展出一套方法让PCI扩充槽能同时支援新型与旧规格的PCI电路板。早期的PCI电路板和PCI-X 1.0(又称为mode-1)电路板都使用3.3V VIO,而PCI-X 2.0 266MHz和533MHz(又称为mode-2)电路板使用的则是1.5V VIO电压。误用3.3V电源的mode-2电路板会发生故障;而误用1.5V电源的旧规格或mode-1电路板,则可能会没有足够的电压在汇流排产生逻辑 “1” 信号。

原始的PCI标准是以不同的接脚边缘外形让5V和3.3V电路板共存,但这种做法无法提供回溯相容性。PCI-X 2.0则是借用现代高效能微处理器技术,也就是透过逻辑电路来选择电压(logic-selectable voltage)来解决此问题。

PCI电路板连接座上有个称为PCIXCAP的PCI-X相容性接脚,PCI系统会利用系统电路板上的模拟数字转换器测量PCIXCAP的电压值以决定PCI电路板速度。传统PCI电路板会将PCIXCAP接地,使扩充槽控制器将汇流排速度限制在33MHz。PCI-X 66MHz电路板会在PCIXCAP接脚加上10kΩ下拉电阻,让PCI-X以66MHz速度操作;PCI-X 133MHz电路板则会让PCIXCAP处于浮动状态,以启动133MHz操作模式。

这种技术还能根据PCIXCAP共用接脚电压来设定整个汇流排。比方说,只要有一张PCI电路板将PCIXCAP接地,整个汇流排就会使用33MHz;PCIXCAP接脚若处于浮动高电位,就表示所有PCI电路板皆为PCI-X 133MHz,使汇流排进入133MHz操作模式。若有部份电路板在PCIXCAP加上10kΩ下拉电阻,PCIXCAP接脚电压就会低于浮动状态的高电压,但仍高于接地电压,此时汇流排会在PCI-X 66MHz速率下操作。

PCI-X 2.0定义两种新的下拉电阻值:PCI-X 266MHz的3.16kΩ以及PCI-X 533MHz的1.02kΩ,来进一步扩大此技术,使操作速度增加为五种。系统可以根据PCIXCAP模拟数字转换器所提供的资讯来设定汇流排速度与VIO电压。

工程师还需解决许多其他问题才能完成64位元266MHz扩充槽实作。桥接技术速度虽然已能让一个桥接器支援6个32位元的66MHz PCI扩充槽,但目前仍只能处理2个64位元的133MHz PCI-X 1.0汇流排扩充槽;266MHz以上的PCI汇流排更要将桥接器直接连线至扩充槽,才能满足两者之间的超高资料速率要求。

PCI VIO规格

使用3.3V或5V I/O电源和较慢的资料速率时,就算电源供应电压略有变动,PCI系统所输出的低电位和高电位电压仍能达到TTL规格要求。但如果VIO降到1.5V,资料速率又增加至266MHz以上,信号振幅范围将大幅缩小,信号稳定时间则相对变得更重要。

PCI规格对于不同的VIO电压要求如下:

本文引用地址://m.amcfsurvey.com/article/258631.htm

PCI-X mode 1要求扩充槽和桥接器的3.3V VIO电压相差不能超过±100mV;这就表示桥接晶片的VIO电压必须在扩充槽VIO电压的100mV范围内,以便忍受电流感测电阻、独立的电源切换FET开关电晶体、和信号线的可能电压降。但若VIO电压为1.5V,扩充槽与桥接器的电压就不能相差超过±15mV;此时唯有让它们使用同一组电源,并以又短又粗的导线将其电源接点连接在一起,才能确保扩充槽与桥接器的电压相差在要求范围内。

针对VIO电压的要求也带来了许多新限制。举例来说,桥接晶片必须能开启和关闭VIO电压,以及选择电压值在3.3V与1.5V之间。电源供应选择开关在提供电源给扩充槽负载(最高1.5A)和桥接晶片负载时(最高1.5A以上,视桥接晶片而定),其电压降不能超过±75mV。

VIO电源实作

有些系统会用它的1.5V电源层,提供VIO电压给mode-2桥接器和PCI-X扩充槽。这些系统只要遵守下列简单规则,就能使用切换电路来提供VIO电压:

1. 以宽而短的线路将VIO电压传送给桥接器和扩充槽;

2. 略为提高1.5V电源层的电压;

3. 使用导通阻抗极低的功率FET电晶体和电流感测元件;

4. 在「阻隔串接线路」(blocking series connection)上,利用两颗FET开关电晶体将1.5V电源送到桥接器和扩充槽;如此一来,无论扩充槽电压为0V或3.3V,只要FET处于截止状态,就不会有电流从扩充槽通过FET的体二极管进入1.5V电源层。

除了采用上述的切换电路之外,也能以1.8V电源供应器来提供VIO电压给mode-2扩充槽和桥接晶片,然后再利用低压降线性稳压器将1.8V降压至1.5V电压。这种做法可使用成本较低的FET电晶体,而对于电路板绕线要求也比较宽。比方说,设计人员可以使用UC382-1之类的低压降稳压元件,或图1所示的TPS2342热插拔电源控制器;此时功率FET将同时扮演电源选择器、稳压器、和热插拔电源开关等多种角色。

图1:采用TPS2342 PCI-X 2.0热插拔控制器的1.8V和3.3V VIO电压选择电路。它会在汇流排处于mode-2模式时,透过放大器驱动Q2和Q3,使+1.8V电压降为1.5V。

扩充槽VIO接脚与元件15VIS接脚之间的连线极为重要;由于它同时担任着电流感测和稳压感测等功能,所以在绕线时需特别注意。

若系统无法提供低电压电源,也能利用可程式交换式稳压器来提供VIO电压;例如使用可接受+12V输入电源的PTH05000 VRM稳压模组提供3.3V或1.5V电压,或是採用内建FET电晶体的TPS54310 SWIFT等交换式稳压元件。


上一页 1 2 下一页

关键词:PCI背板电源

评论


相关推荐

技术专区

关闭