新闻中心

EEPW首页>设计应用> 抑制同步开关噪声的超带宽电磁带隙结构的研究

抑制同步开关噪声的超带宽电磁带隙结构的研究

作者: 时间:2014-04-21 来源:网络 收藏

本文引用地址://m.amcfsurvey.com/article/259489.htm

本文针对抑制印刷电路板中电源平面与接地平面之间的问题,提出了一种新型的二维(BS)。其有效阻带为220 MHz~20GHz,覆盖近20GHz 的带宽。

这一新型结构的设计基于在正方形金属贴片的四角刻蚀出折线型缝隙以降低贴片的有效电容,应用折线以增加相邻贴片的有效电感,单元晶格由折线与含有缝隙的 正方形金属贴片桥接构成。仿真分析结果表明:相比于同参数的Z-bridged,当抑制深度定义为-30dB时,BS结构阻带范围从220MHz到超过20GHz,相对带宽增加了约15%,阻带下限截止频率降低了110MHz.

0 引言

随着现代高速数字电路的发展,因为高时钟速率和低电压电平等原因,电源平面和地平面之间的(Simultaneous Switching Noise,SSN)变成人们最关心的问题之一。在印制电路板中当有些有源器件同时开关时,所产生的多种谐振模式会产生,这会引起一系列诸如 信号完整性和电磁兼容的问题。

由于在印刷电路板中系统的电磁兼容非常重要,电路设计者必须面对如何消除高速电路的SSN 这一问题。为了抑制SSN,人们已经提出了许多种方法,其中添加电源平面和接地平面之间的去耦电容是最常用的方法。

由于去耦电容中存在寄生电感,寄生电感会产生自谐振与去耦电容,这限制了它的频率带宽,所以这种方法已经被证明不能有效应用于频率高于600MHz的情况。

最近,电源平面被设计成电磁带隙(EBG)结构来消除SSN,特别是在高频率段应用广泛。EBG结构从最初的蘑菇型EBG 结构发展到现在的共面型EBG结构,相对于蘑菇型EBG结构,共面型EBG结构不需要专门进行过孔柱设计和多个金属层。

本文提出了一种新型的超宽带共面BS EBG结构,其有效阻带为220MHz~20GHz,覆盖近20GHz的带宽。本文BS EBG 结构的关键点是在正方形贴片四角蚀刻折线型缝隙,并且相邻的单元之间通过折线形枝节链接。折线形缝隙大大增加相邻的电磁带隙单元之间的电感,它可以有效地 抑制低频段的SSN,拥有相对宽的带宽。仿真结果表明:本文EBG 结构可以有效地抑制阻带的SSN开关噪声。

1 BS EBG 电源平面的设计与分析

现代高速数字电路的同步开关噪声范围为100 MHz~20GHz,为了有效地消除这种宽带噪声,人们已经尝试了很多方法来扩展EBG结构的带宽。由于大多数的SSN在低频带产生,因此,如何降低阻带的下限截止频率,同时保持较宽的阻带的带宽是设计的目标。谐振型EBG结构其周期单元本身具有谐振效果,在带隙形成中起 主要作用。新型EBG 结构单元经过专门设计,使该单位可以相当于一个谐振效应比较强的LC并联电路。

由于EBG单元在谐振状态下电抗为无穷大,因此,可以防止在谐振频率附近的电磁波传播,形成特定频率带隙。带隙的中心频率和相对带宽近似地由表面单元的等效电容C 和等效电感L决定。

为了减少带隙的中心频率,如式(1)所示,可以增加单元结构的电感值和电容值。由式(2)可以知道,带宽与电容值的平方根成反比。因此,基于以上的考虑,增加单元的等效电感值,可以有效地降低带隙的中心频率,并提高其阻带的带宽。

本文所提出的BS EBG 结构设计是正方形贴片四角蚀刻折线型缝隙,并且相邻的单元之间通过折线形枝节链接。

本文EBG构造单元如图1(a)所示,相应的参数a1 =30 mm,a2 = 16 mm,枝节长度l1 = 27.4 mm,l2 = 7.4 mm,l3=7.8mm,枝节宽度w1=w4=0.2mm,w2=0.1mm,w3=0.5 mm,缝隙宽度g1=g2=0.2mm.图1(b)所示为作为参考的Z-bridged EBG结构单元。图1(c)表示相邻的BS EBG 单元构造。当电流从左侧单元中心流到右侧相邻单元的中心,将流过相邻单元之间的金属枝节。

因此,枝节的有效长度越长,EBG结构的实际电感值越大。与传统的Z-bridged EBG 结构的电流流经路径相比,本文的BS EBG 结构枝节长度更长,而且对电源平面的损坏更小。因此,相对于Z-bridged EBG 结构,本文的BS EBG结构具有较低的中心频率和更宽的带隙。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭