新闻中心

EEPW首页>模拟技术>业界动态> 盘点用了三星14nm FinFET 制程的产品

盘点用了三星14nm FinFET 制程的产品

作者: 时间:2016-10-27 来源:benchlife 收藏

LPE FinFET揭密

本文引用地址://m.amcfsurvey.com/article/201610/311948.htm

  我们从观察典型14 nm LPE FinFET晶体管的SEM侧视图开始(图1)。晶体管通道如同矽鳍片(Si Fin)般地形成,而非由图片的左下角向右上方生长。这些鳍片被埋在电介质下方而无法直接看到,因此,我们以箭号指示其方向。金属闸就位于正交方向,覆盖在整个鳍片的两侧与顶部。在闸电极的任一侧可看到较大的源极与汲极(S/D)触点。

盘点用了三星14nm FinFET 制程的产品

  图1:14 nm LPE FinFET晶体管的侧视SEM图

  也许从另一张三星FinFET晶体管的平面图(图2)中能更清楚的看到闸极与鳍片的布局。四片矽鳍以垂直的方向排列在水平方向的金属闸极正下方。这两种晶体管结构周围都围绕着一个阱触环,用于隔离其与芯片上的其他电路部份。

  该鳍片间距约有49nm,必须采用双重图案制程来制造。在此提供了两种选择:英特尔所使用的『双微影蚀刻』(LELE),或是『自对准双微影图案法』(SADP)。我们认为三星采用了LELE制程为鳍片制图,但最后还需要额外使用光罩与微影制程,才能中断晶体管的两端。

盘点用了三星14nm FinFET 制程的产品

  图2:三星FinFET晶体管的平面图

  图3是Exynos 7420所使用的典型NMOS晶体管之TEM横截面图,而且我们还注意到闸极长度经测量约有30nm,这跟所宣称的14 nm制程节点差距颇多,而在表1中所整理的英特尔和台积电的情况也是一样的。稍后我们将进一步讨论这个问题。

  晶体管闸极使用替代性闸极制程制造,包括沉积牺牲层(通常为多晶矽)、图案化与蚀刻,形成大约30个较宽的条形(stripe)区域。这些条形区域可定义出晶体管闸极长度。

盘点用了三星14nm FinFET 制程的产品

  图3:三星Exynos 7420的NMOS晶体管横截面图

  接着,侧壁间隔层(SWS)沿着闸极侧面形成,并且用于作为掘入蚀刻定义及随后的外延生长——为NMOS晶体管(eSi)生长矽,以及为PMOS晶体管生长矽锗(eSiGe )等。在完全形成源极/汲极后,以氧化物填充腔室,接着再进行化学机械研磨(CMP)制程。

  PMOS源极/汲极区域的SiGe具有围绕矽鳍的较大晶格常数,因而在PMOS晶体管上产生压缩应变,从而提高其驱动电流。大量掺杂的SiGe与NMOS eSi源极/汲极也包覆在鳍片两侧,为钨填充的触点提供较大的接触贴片,从而为晶体管实现更低的接触电阻。

盘点用了三星14nm FinFET 制程的产品

  图4:三星14nm节点的PMOS电晶体管

  在此移除该牺牲层闸极,并以其闸电介质与金属填充该闸极。图5显示金属填充的NMOS与PMOS晶体管,两个闸极就位于隔离区域的正上方。这些晶体管共用一个通用的氧化铪(HfO)/氧化物高k闸极电介层堆叠。高密度的HfO随晶体管边缘外围绕的暗带衬托而清楚显现。闸极氧化层则环衬在HfO的表面之外。

  HfO的内面则环衬着NMOS与PMOS功函数金属层,用于设定晶体管的阈值电压,这些金属分别拥有不同的组成。

  闸极填充部份也有一点不同。从图中可看到NMOS晶体管的内层部份衬着氧化钛(TiN),再以钨(W)填充,但PMOS晶体管则不然。闸极长度较短的PMOS晶体管并未使用钨填充,原因在于TiN封闭闸极顶部,无法再为其填充钨;而这也导致靠近底部的部份形成真空。在闸极长度较长的PMOS晶体管由于TiN未封闭闸极顶部,因而会再度出现钨填充。

盘点用了三星14nm FinFET 制程的产品

  图5:虚拟NMOS和PMOS晶体管

  我们在前面曾经提到三星的FinFET晶体管较所描述的制程节点长度更长,但并不是只有三星如此。包括英特尔与台积电所支援的FinFET闸极长度也比其制程节点更长(如表1)。事实上,以微影尺寸的方式来看,与其所宣称的制程节点也不尽相同。这究竟是怎么一回事?



关键词:三星14nm

评论


相关推荐

技术专区

关闭