新闻中心

EEPW首页>嵌入式系统>设计应用> STM32学习笔记6(TIM模块定时器)

STM32学习笔记6(TIM模块定时器)

作者: 时间:2016-11-28 来源:网络 收藏
TIM模块定时器向上溢出 & 输出比较

首先我们必须肯定ST公司的实力,也承认STM32的确是一款非常不错的Cortex-M3核单片机,但是,他的手册实在是让人觉得无法理解,尤其是其中的TIM模块,没有条理可言,看了两天几乎还是不知所云,让人很是郁闷。同时配套的固件库的说明也很难和手册上的寄存器对应起来,研究起来非常费劲!功能强大倒是真的,但至少也应该配套一个让人看的明白的说明吧~~两天时间研究了STM32定时器的最最基础的部分,把定时器最基础的两个功能实现了,余下的功能有待继续学习。首先有一点需要注意:FWLib固件库目前的最新版应该是V2.0.x,V1.0.x版本固件库中,TIM1模块被独立出来,调用的函数与其他定时器不同;在V2.0系列版本中,取消了TIM1.h,所有的TIM模块统一调用TIM.h即可。网络上流传的各种代码有许多是基于v1版本的固件库,在移植到v2版本固件库时,需要做些修改。本文的所有程序都是基于V2.0固件库。

本文引用地址://m.amcfsurvey.com/article/201611/322603.htm

以下是定时器向上溢出示例代码:

C语言: TIM1模块产生向上溢出事件//Step1.时钟设置:启动TIM1RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

//Step2.中断NVIC设置:允许中断,设置优先级NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_IRQChannel;//更新事件NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;//抢占优先级0NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;//响应优先级1NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;//允许中断NVIC_Init(&NVIC_InitStructure);//写入设置

//Step3.TIM1模块设置void TIM_Configuration(void){TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;TIM_OCInitTypeDef TIM_OCInitStructure;

//TIM1 使用内部时钟//TIM_InternalClockConfig(TIM1);

//TIM1基本设置//设置预分频器分频系数71,即APB2=72M, TIM1_CLK=72/72=1MHz//TIM_Period(TIM1_ARR)=1000,计数器向上计数到1000后产生更新事件,计数值归零//向上计数模式//TIM_RepetitionCounter(TIM1_RCR)=0,每次向上溢出都产生更新事件TIM_BaseInitStructure.TIM_Period = 1000;TIM_BaseInitStructure.TIM_Prescaler = 71;TIM_BaseInitStructure.TIM_ClockDivision = 0;TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_BaseInitStructure.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);

//清中断,以免一启用中断后立即产生中断TIM_ClearFlag(TIM1, TIM_FLAG_Update);//使能TIM1中断源TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);

//TIM1总开关:开启TIM_Cmd(TIM1, ENABLE);}

//Step4.中断服务子程序:void TIM1_UP_IRQHandler(void){GPIOC->ODR ^= (1<<4);//闪灯TIM_ClearITPendingBit(TIM1, TIM_FLAG_Update); //清中断}

下面是输出比较功能实现TIM1_CH1管脚输出指定频率的脉冲:

C语言: TIM1模块实现输出比较,自动翻转并触发中断//Step1.启动TIM1,同时还要注意给相应功能管脚启动时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

//Step2. PA.8口设置为TIM1的OC1输出口GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);

//Step3.使能TIM1的输出比较匹配中断NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQChannel;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);

//Step4. TIM模块设置void TIM_Configuration(void){TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;TIM_OCInitTypeDef TIM_OCInitStructure;

//TIM1基本计数器设置TIM_BaseInitStructure.TIM_Period = 0xffff;//这里必须是65535TIM_BaseInitStructure.TIM_Prescaler = 71;//预分频71,即72分频,得1MTIM_BaseInitStructure.TIM_ClockDivision = 0;TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_BaseInitStructure.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);

//TIM1_OC1模块设置TIM_OCStructInit(& TIM_OCInitStructure);TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;//管脚输出模式:翻转TIM_OCInitStructure.TIM_Pulse = 2000;//翻转周期:2000个脉冲TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//使能TIM1_CH1通道TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//输出为正逻辑TIM_OC1Init(TIM1, &TIM_OCInitStructure);//写入配置

//清中断TIM_ClearFlag(TIM1, TIM_FLAG_CC1);

//TIM1中断源设置,开启相应通道的捕捉比较中断TIM_ITConfig(TIM1, TIM_IT_CC1, ENABLE);

//TIM1开启TIM_Cmd(TIM1, ENABLE);//通道输出使能TIM_CtrlPWMOutputs(TIM1, ENABLE);}

Step5.中断服务子程序void TIM1_CC_IRQHandler(void){u16 capture;if(TIM_GetITStatus(TIM1, TIM_IT_CC1) == SET){TIM_ClearITPendingBit(TIM1, TIM_IT_CC1 );capture = TIM_GetCapture1(TIM1);TIM_SetCompare1(TIM1, capture + 2000);//这里解释下://将TIM1_CCR1的值增加2000,使得下一个TIM事件也需要2000个脉冲,//另一种方式是清零脉冲计数器//TIM_SetCounter(TIM2,0x0000);}}

关于TIM的操作,要注意的是STM32处理器因为低功耗的需要,各模块需要分别独立开启时钟,所以,一定不要忘记给用到的模块和管脚使能时钟,因为这个原因,浪费了我好多时间阿~~!

九九的STM32笔记(二)TIM模块产生PWM

这个是STM32的PWM输出模式,STM32的TIM1模块是增强型的定时器模块,天生就是为电机控制而生,可以产生3组6路PWM,同时每组2路PWM为互补,并可以带有死区,可以用来驱动H桥。下面的代码,是利用TIM1模块的1、2通道产生一共4路PWM的代码例子,类似代码也可以参考ST的固件库中相应exampleC语言: TIM1模块产生PWM,带死区//Step1.开启TIM和相应端口时钟//启动GPIORCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,ENABLE);//启动AFIORCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);//启动TIM1RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

//Step2. GPIO做相应设置,为AF输出//PA.8/9口设置为TIM1的OC1输出口GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);

//PB.13/14口设置为TIM1_CH1N和TIM1_CH2N输出口GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);

//Step3. TIM模块初始化void TIM_Configuration(void){TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;TIM_OCInitTypeDef TIM_OCInitStructure;TIM_BDTRInitTypeDef TIM_BDTRInitStructure;

//TIM1基本计数器设置(设置PWM频率)//频率=TIM1_CLK/(ARR+1)TIM_BaseInitStructure.TIM_Period = 1000-1;TIM_BaseInitStructure.TIM_Prescaler = 72-1;TIM_BaseInitStructure.TIM_ClockDivision = 0;TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_BaseInitStructure.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);//启用ARR的影子寄存器(直到产生更新事件才更改设置)TIM_ARRPreloadConfig(TIM1, ENABLE);

//TIM1_OC1模块设置(设置1通道占空比)TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;TIM_OCInitStructure.TIM_Pulse = 120;TIM_OC1Init(TIM1, &TIM_OCInitStructure);//启用CCR1寄存器的影子寄存器(直到产生更新事件才更改设置)TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);

//TIM2_OC2模块设置(设置2通道占空比)TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;TIM_OCInitStructure.TIM_Pulse = 680;TIM_OC2Init(TIM1, &TIM_OCInitStructure);//启用CCR2寄存器的影子寄存器(直到产生更新事件才更改设置)TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);//死区设置TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;TIM_BDTRInitStructure.TIM_DeadTime = 0x90;//这里调整死区大小0-0xffTIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);//TIM1开启TIM_Cmd(TIM1, ENABLE);//TIM1_OC通道输出PWM(一定要加)TIM_CtrlPWMOutputs(TIM1, ENABLE);

}其实,PWM模块还可以有很多花样可以玩,比方在异常时(如CPU时钟有问题),可以紧急关闭输出,以免发生电路烧毁等严重事故

《九九的STM32笔记》整理(2)

这是一个综合的例子,演示了ADC模块、DMA模块和USART模块的基本使用。我们在这里设置ADC为连续转换模式,常规转换序列中有两路转换通道,分别是ADC_CH10(PC0)和ADC_CH16(片内温度传感器)。因为使用了自动多通道转换,数据的取出工作最适合使用DMA方式取出,so,我们在内存里开辟了一个u16 AD_Value[2]数组,并设置了相应的DMA模块,使ADC在每个通道转换结束后启动DMA传输,其缓冲区数据量为2个HalfWord,使两路通道的转换结果自动的分别落到 AD_Value[0]和AD_Value[1]中。然后,在主函数里,就无需手动启动AD转换,等待转换结束,再取结果了。我们可以在主函数里随时取AD_Value中的数值,那里永远都是最新的AD转换结果。如果我们定义一个更大的AD_Value数组,并调整DMA的传输数据量(BufferSize)可以实现AD结果的循环队列存储,从而可以进行各种数字滤波算法。接着,取到转换结果后,根据V=(AD_Value/4096)*Vref+的公式可以算出相应通道的电压值,也可以根据 T(℃) = (1.43 - Vad)/34*10^(-6) + 25的算法,得到片内温度传感器的测量温度值了。通过重新定义putchar函数,及包含"stdio.h"头文件,我们可以方便的使用标准C的库函数printf(),实现串口通信。相关的官方例程,可以参考FWLib V2.0的ADCADC1_DMA和USARTprintf两个目录下的代码。

本代码例子是基于万利199的开发板EK-STM32F实现,CPU=STM32F103VBT6

#i nclude "stm32f10x_lib.h"#i nclude "stdio.h"

#define ADC1_DR_Address((u32)0x4001244C)vu16 AD_Value[2];vu16 i=0;s16 Temp;u16 Volt;

void RCC_Configuration(void);void GPIO_Configuration(void);void NVIC_Configuration(void);void USART1_Configuration(void);void ADC1_Configuration(void);void DMA_Configuration(void);

int fputc(int ch, FILE *f);void Delay(void);u16 GetTemp(u16 advalue);u16 GetVolt(u16 advalue);int main(void){RCC_Configuration();GPIO_Configuration();NVIC_Configuration();USART1_Configuration();DMA_Configuration();ADC1_Configuration();//启动第一次AD转换ADC_SoftwareStartConvCmd(ADC1, ENABLE);//因为已经配置好了DMA,接下来AD自动连续转换,结果自动保存在AD_Value处while (1){Delay();Temp = GetTemp(AD_Value[1]);Volt = GetVolt(AD_Value[0]);USART_SendData(USART1, 0x0c);//清屏//注意,USART_SendData函数不检查是否发送完成//等待发送完成while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);

printf("电压:%d.%d 温度:%d.%d℃", Volt/100, Volt0, Temp/100, Temp0);}}

int fputc(int ch, FILE *f){//USART_SendData(USART1, (u8) ch);USART1->DR = (u8) ch;while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){}

return ch;}

void Delay(void){u32 i;for(i=0;i<0x4f0000;i++);return;}

u16 GetTemp(u16 advalue){u32 Vtemp_sensor;s32 Current_Temp;//ADC转换结束以后,读取ADC_DR寄存器中的结果,转换温度值计算公式如下://V25 - VSENSE// T(℃) = ------------ + 25//Avg_Slope//V25: 温度传感器在25℃时 的输出电压,典型值1.43 V。// VSENSE:温度传感器的当前输出电压,与ADC_DR 寄存器中的结果ADC_ConvertedValue之间的转换关系为://ADC_ConvertedValue * Vdd// VSENSE = --------------------------//Vdd_convert_value(0xFFF)// Avg_Slope:温度传感器输出电压和温度的关联参数,典型值4.3 mV/℃。

Vtemp_sensor = advalue * 330 / 4096;Current_Temp = (s32)(143 - Vtemp_sensor)*10000/43 + 2500;return (s16)Current_Temp;}

u16 GetVolt(u16 advalue){return (u16)(advalue * 330 / 4096);}

void RCC_Configuration(void){ErrorStatus HSEStartUpStatus;

//使能外部晶振RCC_HSEConfig(RCC_HSE_ON);//等待外部晶振稳定HSEStartUpStatus = RCC_WaitForHSEStartUp();//如果外部晶振启动成功,则进行下一步操作if(HSEStartUpStatus==SUCCESS){//设置HCLK(AHB时钟)=SYSCLKRCC_HCLKConfig(RCC_SYSCLK_Div1);

//PCLK1(APB1) = HCLK/2RCC_PCLK1Config(RCC_HCLK_Div2);

//PCLK2(APB2) = HCLKRCC_PCLK2Config(RCC_HCLK_Div1);//设置ADC时钟频率RCC_ADCCLKConfig(RCC_PCLK2_Div2);

//FLASH时序控制//推荐值:SYSCLK = 0~24MHzLatency=0//SYSCLK = 24~48MHz Latency=1//SYSCLK = 48~72MHz Latency=2FLASH_SetLatency(FLASH_Latency_2);//开启FLASH预取指功能FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

//PLL设置 SYSCLK/1 * 9 = 8*1*9 = 72MHzRCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);//启动PLLRCC_PLLCmd(ENABLE);//等待PLL稳定while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);//系统时钟SYSCLK来自PLL输出RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//切换时钟后等待系统时钟稳定while(RCC_GetSYSCLKSource()!=0x08);

}

//下面是给各模块开启时钟//启动GPIORCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,ENABLE);//启动AFIORCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);//启动USART1RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);//启动DMA时钟RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);//启动ADC1时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);

}


上一页 1 2 下一页

评论


技术专区

关闭