新闻中心

EEPW首页>测试测量>设计应用> 内建式抖动测量技术(中)

内建式抖动测量技术(中)

作者: 时间:2017-01-09 来源:网络 收藏



《图十 抖动放大电路时序图:(a)Case 1 : tf>ts2;(b)Case 2 : tf≈ts2;(c)Case 3 : tf


所以在此频段操作因有足够的稳态区间(stable region),其经决策电路后产生之输出相位差fOUT相较于输入相位差fIN几乎能维持定值,也就代表放大倍率A为constant。但若当待测时脉频率上升后,如图十(b)所示,随着讯号周期缩短tf之发生点提前,在tf非常接近但大于ts2时,抖动放大电路依然可勉强维持住放大倍率,所以此时即称为操作临界值。但假若不幸在所使用的应用中tf发生较大的变异或是操作频率继续往上升,导致ts2比tf晚发生,则放大倍率将开始产生非线性的变化。

从图十(c)可观察出在正常的操作模式下f1与f2最后皆会回到稳态位准VH、VL。但假若转态边缘tf在尚未稳定前就出现,则f1与f2之电压会被强制维持在新的位准上,也就是VH’(=VH-ΔV)与VL’(= VL +ΔV)。这个现象虽对于第一个周期(initial stage)之放大倍率没有造成影响,但是从图中得知,在下一个周期(next stage)中因为f1、f2电压起始位准点有了变化,所以经充电后与临界电压Vth的交点必然随之改变。换句话说就是voltage domain variation将转换成time domain之phase error,此时即会造成放大倍率变动。因此周期对周期抖动放大电路需操作在wide range之应用时,就必需利用一些机制控制稳态时间点ts比负缘转态点 tf早发生,如此才不会造成放大倍率的失真。有鉴于此,本文将提出一个使用脉波吞噬观念之单撷取量测方式来改善之。

脉波吞噬之单撷取量测方式

《图十一 脉波吞噬概念图》


以上述讨论可知,若要实现tsf,不外乎是将稳态时间点往前拉会或者是延迟负缘转态点产生之时间。以电路实现角度而言,因ts是电流对负载充电后所产生的电压与高电位VH之交集,所以电流越大、回到稳态点能力越强,相对其出现时间会越早。但抖动放大的产生就是藉由不同速率电流之差所得,想必然放大倍率也将受到影响。所以为了兼顾放大倍率与电流量间trade-off,本文将采用延迟tf之作法来维持不同操作频率下的抖动放大倍率。

如图十一case1所示为一低频操作时的示意图。为了让抖动放大电路的放大倍率维持定值,待测讯号的ts必需小于tf,而worst case会发生在ts等于tf的时间点,此时稳态区间几乎会近似于零,也就是说放大倍率会非常不稳定。

为了改善这个问题,以先前的说法就必需将tf时间点做延迟。简单来看就是把测试速度放慢,利用脉波吞噬电路移除掉0.5个周期,来换取稳态区间之宽度。如图所示,若把case1的讯号做处理后成为TAIn1,其负缘转态时间点发生的时间往后延迟了Δτ(=tfn-tf=Tcycle/2),这代表着稳态区间随之放大2倍。因此若把待测讯号的频率增加后,其因具有足够的稳态时间,所以放大倍率将不受到clock variation和频率变动之影响。

但在图十一 Case2中,待测时脉讯号操作速度持续上升(约为Case1的两倍),可以很明显观察到若不采用脉波吞噬机制,ts已远远超越了tf,此时抖动放大电路之放大倍率已为非线性操作;但若加入脉波吞噬的机制后,因待测讯号速度太快,在相同充放电的速率条件下,ts也非常靠近tfn,放大倍率变异的问题还是存在。所以由此可知真正要达到wide range的操作,不管在任何频率下,皆需要拥有相同的稳态区间,才会真正得到constant之放大倍率。有鉴于此,我们将脉波吞噬的机制稍做修改,将不再维持固定移除0.5个周期,而是随着待测物的频率每增加一倍而随之变化,其remove number可由公式二表示之:

《公式二》

其中N为频率变化率。在本文中所提出的例子因为要达到数十MHz~1.6GHz之操作,所以将100MHz定为基准,频率每增加一倍就必需改变remove number来维持放大倍率。如图十二所示。


《图十二 于各操作频段间之脉波吞噬概念图》


以电路的角度而言,要实现图十二脉波吞噬电路其实不难,只要将待测讯号依频段经过相对应的除频器即可实现。但实际上若直接把待测讯号经过除频器来达到脉波吞噬,依参考文献[9]之说法,该讯号的抖动也同时间会被放大,约为 √n倍。此外,除16的电路最少需要4组DFF来实现,代表待测讯号到达抖动放大电路前就必需经过许多transistor,进而受到power noise或是thermal noise干扰导致抖动上升,这将会严重影响量测准确度。


评论


技术专区

关闭