新闻中心

EEPW首页>模拟技术>设计应用> 频率响应法--极坐标图

频率响应法--极坐标图

作者: 时间:2012-03-17 来源:网络 收藏
法--

如果要比较精确地计算和绘制,一般来说是比较麻烦的,为此可用频率特性的另一种图示法:对数坐标图。对数坐标图法不但计算简单,绘图容易,而且能直观地表现开环增益、时间常数等参数变化对系统性能的影响。

一般对数坐标图由两部分组成:一张是对数幅频特性图,它的纵坐标为,单位是分贝,用符号dB表示。通常为了书写方便,把用符号表示。另一张是相频图。两张图的纵坐标都是按线性分度,单位分别为dB和,横坐标是角频率

为了更好地体现开环系统各频段的特性,可对横坐标采用的对数坐标分度,从而形成了半对数坐标系。这对于扩展频率特性的低频段,压缩高频段十分有效。在以分度的横坐标上,1到10的距离等于10到100的距离,这个距离表示十倍频程,用符号dec表示。对数幅频特性的“斜率”一般用分贝/十倍频(dB/dec)表示。对数坐标图又称伯德图(Bode图)。

用伯德图表示的频率特性有如下的优点:

1)把幅频特性的乘除运算转变为加减运算。

2)在对系统作近似分析时,一般只需要画出对数幅频特性曲线的渐近线,从而大大简化了图形的绘制。

3)用实验方法,将测得系统(或环节)的数据画在半对数坐标纸上。根据所作出的曲线,容易估计被测系统(或环节)的传递函数。

在Matlab控制工具箱中,亦有专门的函数用于绘制Bode图:Bode函数。同时为绘制开环系统的幅频特性的渐近线,我们编制了画渐近线的作图函数:Bode_asymp。有关它们的使用方法将结合例题进行说明。


5.3.1 典型环节的伯德图

1.比例环节

比例环节K的对数幅频特性是一高度为 dB的水平线,它的相角为零度,如图5-18所示。改变开环频率特性表达式中K的大小,会使对数幅频特性升高或降低一个常量,但不影响相角的大小。

(5-37)

图5-18 比例环节K的对数幅频特性

显然,当时,位于横轴上方;当时,位于横轴上;当时,位位于横轴下方。

2.一阶环节

一阶环节的对数幅频和相频表达式分别为

(5-38)
(5-39)
其中

时,略去式(5-38)中的1,则得,表示高频部分的渐近线是一条斜率为-20dB/dec的直线,当输入信号的频率每增加十倍频程时,对应输出信号的幅值便下降20dB。图5-19所示的是精确对数幅频特性及其渐近线和精确的相频曲线,其中T=1,Matlab命令如下:

G=tf(1,[1,1]);

[x0,y0,w]=bode(g),[x,y]=bode_asymp(g,w);

subplot(211),semilogx(w,20*log10(x0(:)),x,y)

subplot(212),semilogx(w,y0(:))

不难看出,两条渐近线相交点的频率,这个频率称为转折频率,又名转角频率。如果环节的对数幅频特性能用其两条渐近线似表示,则使作图大为简化。问题是,这种近似表示所产生的误差有多大?

图5-19 一阶惯性环节频率特性

由图5-19可见,最大的幅值误差产生在转折频率处,它近似等于-3dB-22a和5 -22b。如果传递函数中含有个积分环节,即,则它的对数幅频和相频表达式可分别写成


上一页 1 2 3 4 5 下一页

评论


相关推荐

技术专区