新闻中心

EEPW首页>电源与新能源>设计应用> 智能手机省电秘诀:看如何从设计源头来降低功耗

智能手机省电秘诀:看如何从设计源头来降低功耗

作者: 时间:2013-09-23 来源:网络 收藏
式。

本文引用地址://m.amcfsurvey.com/article/228230.htm

智能手机省电秘诀:看如何从设计源头来降低功耗

  图13:配备8个白色LED

  分辨率超过300ppi的液晶面板最多可配备8个白色LED。为提高背照灯光的利用效率,采用了旨在提高开口率的面板技术和光学部材。(图为富士通的“Arrows X LTE”配备的4.3英寸、1280×720像素的液晶面板。Fomalhaut Technology Solutions协助拆解)

  尽管如此,现有的液晶面板仍必须使用最多8个白色LED来确保亮度。虽然白色LED的发光效率“有望以年均5~10%左右的幅度提高”(日亚化学工业),但随着高精细化的发展,发光效率提高的部分可能会被抵消掉。仅改良现有技术只能提高数%左右,难以从根本上解决问题。


从像素构成入手

  在大幅削减耗电量上备受关注的液晶技术,也就是子像素排列的变更。具体为,在R(红)G(绿)B(蓝)3色的子像素中添加未配备彩色滤光片(CF)的W(白)来提高面板透射率,从而降低耗电量。虽然这是原来就有的技术,但目前将其应用于高精细面板中的讨论在加速。

  通过变更子像素的排列降低了液晶面板耗电量的终端已经面世。那就是英国索尼移动通信(Sony Mobile Communications)2012年2月发布的“Xperia P”。该机型配备了索尼开发的“WhiteMagic”液晶面板(图14)。

智能手机省电秘诀:看如何从设计源头来降低功耗

  图14:采用RGBW方式的WhiteMagic

  索尼移动通信在该公司的“Xperia P”上采用了索尼开发的液晶面板“WhiteMagic”(a)。通过采用在RGB中追加W的4色子像素,与原产品相比不但将耗电量削减约50%,还可将亮度提高至约2倍(b)。

  WhiteMagic在一个像素上配置了RGBW四色的子像素。即使背照灯亮度减半,面板画面仍可实现与此前产品相同的亮度。其特点是,如果背照灯亮度与原产品相同,则画面亮度可提高至2倍左右。

  索尼移动采用WhiteMagic时,调整了对输入影像的图像处理。这是因为,如果只单纯追加W,影像的对比度感会降低。索尼移动与索尼共同反复调整了将RGB影像信号转换成RGBW时的图像处理参数。由此,“实现了在室内使用时可削减耗电量,在户外时画面明亮容易看清的效果”(索尼移动)。

将RGBW分配给两个像素

  韩国三星电子正在研究同样采用RGBW四色子像素,但将其分配给两个像素的“Pentile”方式。由于将一个像素的子像素数从以往的3个减为2个,因此更方便提高面板透射率。虽然因像素减少而被指画质劣化,但不失为削减耗电量的有效手段。

  三星采用Pentile方式试制的10.1英寸、2560×1600像素的液晶面板,驱动元件采用迁移率低、TFT难以小型化的非晶硅TFT,但却可实现299ppi的高分辨率(图15)。耗电量最大为3.4W,与采用RGB三色CF的10.1英寸1280×800像素产品相同。“最早预定在2012年内开始量产”(三星)。

智能手机省电秘诀:看如何从设计源头来降低功耗

  图15:以Pentile方式降低耗电量

  三星电子正探讨在高精细面板中导入将RGBW四色子像素分配给两个像素的“Pentile”方式。据称在10.1英寸产品的比较中,导入该方式的2560×1600像素产品的耗电量与采用RGB三色子像素的1280×800像素产品为同等水平。

关键在于提高发光元件的性能

  有机EL面板属于自发光型器件,与液晶面板相比构成部材较少。用于智能手机的有机EL面板采用在TFT基板相反的一侧提取光的顶部发光构造,因此不会被TFT遮挡住光线。要降低耗电量,需要提高有机EL元件的内部量子效率和光提取效率。

  要提高有机EL元件的内部量子效率,最有效的方法莫过于采用磷光材料。三重态激励发光的磷光材料与从单重态激励发光的萤光材料相比,在理论上内部量子效率更高。目前的状况是,在智能手机用有机EL面板上,R发光材料已经实用化,G发光材料即将得到采用。但B的磷光材料由于色纯度和寿命较低,实用化尚需时日 注2)。

  注2) 为使磷光材料从三重态发光,而要采用Ir(铱)和Pt(白金)等昂贵的金属。因此存在成本高的课题。九州大学以数年后实现实用化为目标,正在开发不含Ir和Pt的发光材料。通过将单重态和三重态激发状态的能量顺序之差降到50meV,而在将能量向单重态转换。据2012年3月发布的开发成果,已经实现了86.5%的高转换效率。

  出光兴产采用现有的B萤光材料提高了内部量子效率(图16)。该公司通过在电子输送层和发光层之间设置“EEL(efficiency enhancement layer)”层,开发出了超过萤光材料理论界限的B发光元件。“EEL通过使三重态激子在发光元件内保留一定的时间,使激子之间发生碰撞,从而将能量向单重态转移”(出光兴产电子材料部电子材料中心主任研究员熊均)。由此提高了内部量子效率。

智能手机省电秘诀:看如何从设计源头来降低功耗

  图16:耗电量降至1/2以下

  出光兴产通过追加高效率层提高了B萤光材料的内部量子效率,并通过追加覆盖层改善了光提取效率(a,b)。取得了4英寸的800×480像素产品的耗电量在全白显示时为644mW,平均为143mW的模拟结果(c)。(图由本刊根据出光兴产的资料制作)

  出光兴产还设法提高了有机EL元件的光提取效率。通过在发光元件的负极上设置折射率较高的有机物覆盖层,“抑制了表面离子体在负极表面上造成的消光现象”(熊均)。该公司采用B萤光材料以及R和G磷光材料试制出了设置有EEL和覆盖层的有机EL元件。将其用于800×480像素的4英寸品时,预计耗电量在全白显示时为644mW,平均为143mW,可降至目前的1/2以下。

 还可能有第三种显示元件

移动电源相关文章:移动电源是什么


离子色谱仪相关文章:离子色谱仪原理


关键词:电池显示屏CPU智能手机

评论


相关推荐

技术专区

关闭