新闻中心

EEPW首页>测试测量>设计应用> 选择合适的示波器进行高速电路调试和验证

选择合适的示波器进行高速电路调试和验证

作者: 时间:2012-03-20 来源:网络 收藏

1. 通道数限制:当使用不同通道时带宽不同,3通道或4通道使用时仅仅提供6GHZ带宽,ADC采样率也有限制。

2. 频谱“拼接”错误:从幅频特性图可以看出,每一个频率“拼接”点都有明显的非线性,当被测信号的频谱分量在该区域时,时域显示的波形会出现波形失真。

3. 波形捕获率低: 由于DBI技术需要软件处理和“拼接”数字频域的波形,数据量比较大时波形处理和显示速度非常低。

4. 功能限制:当DBI打开时,虽然单通道带宽和ADC提升,但是触发系统的带宽无法通过DBI技术提升,最大仅为800MHZ,另外的外参考输入,垂直灵敏度的精细调整等功能都会由于DBI打开而受限。

数字存储在触发系统上也有很大的进步。从结构框图上可以看到,数字示波器的触发系统是完全独立的一个以模拟电路为主的电路。高性能的触发系统好比是照相机的快门,可以帮助测试人员准确定位信号行为。针对各种特殊信号的特点,数字存储示波器可配备毛刺触发、欠幅脉冲触发、过渡时间、通讯触发、串行触发、窗口触发、状态触发、码型出发和总线触发等多种高级触发模式。泰克的Pinpoint?触发系统是当前全业界最先进的触发系统,在边沿触发和高级触发中使用完全的SiGe技术,所以触发灵敏度都可到达到很高的水平,例如TDS6124C这款仪器,边沿触发和高级触发的灵敏度都可以同时达到 3div@9GHz。这个双触发系统辅以触发延迟设置和触发重置,几乎可以不受限制地设置触发模式。

数字存储示波器有了这些特性,在带宽性能可以远高于较模拟实时示波器;在触发和采样的配合下,数字存储示波器对单次信号(低重复概率信号)的捕获能力有巨大提升;对于信号的测试和分析能力也今非昔比……但是,在增强了对单次信号的捕获、分析能力以后,也引入了难以避免的弱点,这主要体现在波形捕获率和单调的显示能力上。以下我们来说明一下这些弱点:

数字存储示波器的结构上已经决定,它必然工作在一种串行模式下——信号经过调理,进入ADC采样;ADC的采样数据在触发系统的控制下送入采集内存;采集内存存满以后,波形数据被送到计算机系统;微处理器根据用户需求,对这些数据进行处理、计算、分析;最后波形和分析结果被显示在显示器上(滚动模式下工作流程略有不同,这里不做详细描述)。在这个过程中:从信号调理、触发监控到ADC采样,几乎是实时的,不会影响工作效率;而数据从采集内存传到计算机系统、微处理器的处理、计算过程、最终的显示,都会因为示波器的构架不同而影响其实时性。其中最关键的部分是微处理器的处理过程。我们都知道,流行的示波器采样率都会在每秒数十吉(GS/s),没有任何一个通用的微处理器可以实时处理这样的数据流,所以示波器微处理器的处理方式只能是“抓取一段、慢慢处理、控制显示”,然后重复。这样,在其“慢慢处理”的时间中,示波器将不能监视波形,这也就是我们所说的“死区时间”,在死区时间内发生的事件,是不会显示在屏幕上的。为了衡量数字存储示波器的死区时间占到总观测工作时间的比例,我们引入“波形捕获率”的概念,也就是示波器可以连续提供的每秒种内捕获并显示的波形个数。此处的“波形”指一次触发采集的全部信息。试验证明,业界波形捕获率最高的高性能(带宽1GHz以上)数字存储示波器,大概波形捕获率在8000次左右,其捕获波形的总体时间大约占到总观测时间的1~2%,也就是说:全部信号的98%以上的细节,因示波器的死区时间而漏失掉了。

每个工程师都相信仪器提供了正确的信息,但很少有工程师会考虑到自己正在使用的示波器只能提供如此之少的波形细节——举个例子,如果您观测的信号里存在一种平均1秒发生一次的故障,那么数字存储示波器1秒内发现这个故障的概率只有不到2%,15秒内发现的概率也只有大约26%。而事实上,由于开发时间紧迫,一般工程师观测一个信号的时间都不会超过10秒——结果,您只有不到1/4的几率能够捕获这个故障并进行有效调试。

几乎所有的示波器厂商都意识到数字存储示波器波形捕获率低这种缺陷,并且开发出了很多提高示波器速度的方法。但是,无论在数据从采集内存传到微处理器时使用两对1.25Gbps的千兆以太网链路的构架,还是在显示上采用显示局部和抽点显示的加速技术,都未能从最根本的问题上解决吞吐率的问题——串行的构架中,微处理器是速度的瓶颈,只有完全改变串行结构、解放微处理器,才是解决问题的关键。

在这个方面,泰克公司走在了行业的最前面,从一开始就着手于串行构架的改造。从上世纪90年代中期的InstaVu?到2006年初的实时DPO,基于并行构架的第三代示波器:数字荧光示波器,从出现逐渐走向成熟。下图是DPO数字荧光示波器的结构图:


图3:数字荧光示波器结构图

从结构可以看出,DPO数字荧光示波器的并行处理核心是DPX并行成像处理芯片。DPX完成了采集数据的存储、光栅化和统计处理以生成三维数据库。并且能把光栅化的波形图像信息直接导入显存。在这种构架中,微处理器仅仅做显示控制等工作,不再在数据处理过程中充当瓶颈。

DPO 数字荧光示波器的并行结构从根本上解决了DSO数字存储示波器波形捕获率低、波形漏失严重的缺陷。DPO7000、DPO70000系列实时数字荧光示波器的波形捕获率可以达到250000wfm/s,DPO71000、DPO72000系列超高性能数字荧光示波器更可超过300000wfm/s,捕获波形占总体信号的比例也最高可达60%(连续提供);而且新一代的DPX采集也没有了上一代“准实时荧光示波器” 的最高1.25G实时采样率的限制,而是可以工作在任何采样率下,对信号的捕获能力进一步增强,是现在业界发现问题的最佳工具。下图是三家不同厂商的同等级示波器同时观测一个带有偶发故障(约一秒钟发生一次)的时钟,15秒以后的情况。可以看到,在前面两种示波器几乎没有发现任何问题的时候,泰克的数字荧光示波器(右图)却捕获到了此间发生的多次故障,差别一目了然。


图4: 对同一个信号观察相同时间,DPO发现更多波形行为

DPX 生成三位数据库在显示上也有巨大优势。这种由硬件缓冲器记录的数据库可以保存波形的幅度、时间和随时间变化的幅度(即各点信号出现的频度)信息,无论在累计速度还是缓冲器深度(每点26bit)上都远远超过其它厂商的软件生成的数据库。由此三位数据库生成的显示波形,可以以色温、光谱、亮度等级等方式,同时告知用户幅度、时间和信号出现的概率信息,效果非常类似模拟示波器。

数字荧光示波器,拥有和模拟示波器相当的波形捕获率和显示方式,对重复信号和有重复特性的信号(如数字信号、串行通信信号)的捕获和观测能力大大超越传统数字存储示波器,能显著提高调试和验证的效率。同时,数字荧光示波器也具有数字存储示波器对于单次捕获信号的全部分析能力。而且,由于其构架的优势,数字荧光示波器在测试项目、测试速度以及测试精度上都全面领先于数字存储示波器。

如何使用数字荧光示波器进行高效的电路调试和验证,我们将在下两章着重介绍。

第二章 使用实时数字荧光示波器进行调试——发现问题、定位问题、分析问题

调试(Debug)的任务,是要检查设计中存在的问题:改正电路中的错误,消除设计里的缺陷,使设计达到预期的功能,并优化电路。

调试的一般过程,我们可以把它归纳为:发现问题——定位问题——分析问题——解决问题。万用表、示波器、逻辑分析仪等仪表都是重要的调试观察工具。

使用示波器进行调试,准确、快捷、使用方便是每个使用者的要求。选用合适的工具来工作,可以起到事半功倍的效果。



关键词:示波器高速电路

评论


相关推荐

技术专区

关闭