基于LabVIEW的三极管寿命测试系统

元件/连接器 时间:2015-03-06 来源:网络

  3.3工作过程的实现

  3.3. 1综述

  工作开始前,先连接下位机,连接成功后,调用自检模块,对将要做老练测试的老化板进行自检,自检成功后,上位机将参数下发到下位机,然后下发开始控制命令,下位机轮询每块板子的控制命令字,板子开始工作后,将工作需要的加热电流和测量电流以及程控电压等通过串行数据传输模块下发到驱动板,通过驱动板加载到相应的老化板上,给器件加热,记录此时的时间,即为加热开始时刻,当前时刻与加热开始时刻之差大于等于开时间的时候,停止加热,打开风扇,记录加热结束时刻,开始AD采集,根据采集的电流和电压计算出结温,将数值传回上位机,上位机根据温度变化绘出一条曲线。当前时刻与加热结束时刻之差大于等于关时间时,冷却完成并结束测量,进入下一次循环,循环次数到达后,将此板子置于空闲状态。

  3.3.2精度和切换速度的实现

  1)高速ADC采集

  sbRIO-9612上集成有AD采集芯片,16位的AD可以保证其采样分辨率达到1‰,同时,4μs的转换时间,保证了AD的采样速度;为了消除共模噪声的影响,将32路AD转换为16路的差分输入,采集时每次每个通道连续取8个数值求均值为本次采集的结果,同时配合老化板中采用的高速开关进行切换,保证了采集数据的精度要求。下图是在设定的10 mA的测量电流和12 V的程控电压,通过LabVIEW显示出当前NMOS管(型号为IRFP460)的结电压和当前时刻测量得到的管子结温,室温通过安装在每块老化板上的温度传感器得出为17.3 20 6摄氏度,从图5中看出,AD采集回来的16通道的值都在小数点三位后开始波动,保证了计算得到的△Vf的值在小数点后二位开始波动。

  系统在加热状态切入到测量状态后20μs内可完成所有工位结电压的采集,为达到快速采集要求,编写程序时候,考虑到ADC高实时性问题,将采集部分分配到sbRIO-9612的FPGA上完成,sbRIO-9612的Onboard Clock为40 MHz,即0.025μs的周期,写FPGA程序时,将ADC采集配置(即开关的切换命令执行)和采集数据放到顺序结构的相邻的两帧之间,考虑到开关切换时间,中间加1μs的等待,保证数据的可靠性,然后开始数据采集,ADC采集部分程序如图6所示。

  图6 AD采集结果在Labview中显示

  图7 FPGA上ADC结电压采集程序

  2)差分数据传输

  此模块实现sbRIO-9612与FPGA之间的通信,通信方式为总线异步访问的方式,通过串行DAC方式收发数据,所谓串行DAC,即在一定的时钟下(时钟周期为80 MHz),按照固定的时序进行串行发数,先将地址分配到端口,地址总共为六位,即A0-A5,高四位为地址位(控制板号),低两位为驱动板寄存器地址;然后将数据放到数据总线上,数据格式为U8,置高WR/RD,然后:DR位置低,保持两个时钟周期,DR置高,完成串行DAC写数据;同理,读数据时先设置地址总线,WR/RD置低,DR置低,保持两个时钟周期,在两个周

  期内完成数据的读取,DR置高,完成串行DAC读数据。整个通信模块按照通信协议,实现了sbRIO-9612对FPGA的控制。

  图8 SbRIO读取和写入时序

1 2 3 4

关键词:LabVIEW三极管

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章


用户评论

请文明上网,做现代文明人
验证码:
查看电脑版